
Nexus 1.0: Enabling Verifiable Computation

Daniel Marin ∗,

Michel Abdalla, Paul Govereau, Jens Groth, Samuel Judson, Kristian Sosnin, Guru Vamsi
Policharla, and Yinuo Zhang †

Nexus Labs
{daniel,michel,paul,jens,sam,kristian,vamsi,yinuo}@nexus.xyz

January, 2024

Abstract

We introduce the Nexus project, an endeavor to enable verifiable computation, at Internet scale.
The world has come a long way since Turing introduced in 1936 a universal computing machine, a
hypothetical machine capable of executing any computation. This concept is considered the origin
of the general-purpose computer, and was used by von Neumann to introduce the von Neumann
architecture, a physical instantiation of the Universal Turing Machine. This architecture now powers
virtually all modern computers.

In this paper, we introduce the Nexus zkVM (zero-knowledge virtual machine), a machine capable
of proving any computation. That is, the machine produces succinct zero-knowledge proofs of correct
program execution for any stateful machine (e.g. RISC-V, EVM,Wasm) with any particular instruction
set. The Nexus zkVM focuses on proving large computations (e.g. 1B+ CPU cycles), and is architected
to enable massively parallelized incremental proof generation, well suited for parallel proving in a
distributed prover network.

The zkVM is powered by modern high-speed recursive proof systems (i.e. folding / accumulation)
that allow proofs to be combined and aggregated, realizing the notions of Incrementally Verifiable
Computation (IVC) and its generalization, Proof-Carrying Data (PCD). Further, we introduce the
Nexus Virtual Machine (NVM), a simple, minimal, and extensible Universal Turing Machine: a vir-
tual CPU architecture specifically designed to maximize prover performance. The NVM is the core
computational model of the Nexus zkVM, and can simulate with minimal overhead any other ISA like
RISC-V, EVM, Wasm, etc, through compilation and emulation techniques, as well as extensions in the
instruction set (e.g. SHA-256).

We briefly describe the Nexus Network, an upcoming large-scale distributed prover network that
aggregates the collective CPU / GPU power of a pool of heterogeneous computers to instantiate
an extremely parallelized large-scale proof generation system for the Nexus zkVM. This enables the
zkVM to operate at a scale (measured in CPU cycles proved per second) proportional to the collective
computing power of the network.

Fundamentally, the Nexus project seeks to bring the concrete cost of verifiable computation down
by orders of magnitude through a variety of scientific, engineering, and economic techniques, so that
it may finally become a practical form of computation. The project builds upon decades of scientific
research in cryptography, complexity theory, compilers, and high-performance computing. We focus on
delivering a simple developer experience and a system designed to power production-grade applications,
with initial support for Rust programs.

We envision a future for the Internet where the integrity of computations and data are protected
by proofs: a future where human cooperation is enhanced by mathematical truth. This constitutes
our first construction towards that vision.

∗Main author.
†Thanks to the Nexus team for helpful discussions, listed here in alphabetical order.

1

Contents

1 Summary 3
1.1 The Nexus zkVM . 3
1.2 The Nexus Virtual Machine . 4
1.3 The Nexus zkVM co-processors. 6
1.4 The Nexus Network . 7
1.5 Open-Source Implementation . 9
1.6 Example . 11

2 Introduction 12
2.1 Why are zero-knowledge proofs still not practical? . 12
2.2 The Nexus System . 14

3 Background 15

4 Preliminaries 18
4.1 The Sum-Check Protocol . 18
4.2 Non-Interactive Arguments of Knowledge (NARKs) . 18
4.3 Incrementally Verifiable Computation (IVC) . 19
4.4 Non-uniform Incrementally Verifiable Computation (NIVC) 20
4.5 Proof-Carrying Data . 21
4.6 Folding Schemes . 22
4.7 Multi-Folding Schemes . 23
4.8 Customizable Constraint Systems . 25

4.8.1 The CCS Relation . 25
4.8.2 The Committed CCS Relation . 25
4.8.3 The Linearized Committed CCS Relation . 26

5 Components 27
5.1 A Multi-Folding Scheme for CCS . 27
5.2 A Generalized Multi-Folding Scheme for CCS . 28
5.3 The Fiat-Shamir Transform For Multi-Folding Schemes 30
5.4 The CycleFold Compiler . 30
5.5 HyperNova . 32
5.6 Parallel Nova . 33
5.7 Parallel HyperNova . 36

6 Defining Zero-Knowledge Virtual Machines 38

7 The Nexus zkVM: A General-Purpose IVC Machine 39

8 The Nexus Network: A Verifiable Supercomputer 41

2

1 Summary

In this whitepaper, we describe our vision for the Nexus project and our first set of technologies. For a
formal treatment and new techniques, please refer to our follow on technical paper.

TL;DR: Nexus is building a distributed zkVM,
designed to prove a trillion CPU cycles per second.

We believe that the world’s computers can unite into a single, verifiable supercomputer,
and jointly prove humanity’s computation.

How to read. This document progresses in an increasing level of technical detail.

• For general readers: we recommend reading the Summary (Sec. 1) to learn about:

1. The Nexus zkVM (Sec. 1.1)

2. The Nexus Virtual Machine (Sec. 1.2 and 1.3)

3. The Nexus Network (Sec. 1.4)

• For developers: we recommend checking out the Example (Sec. 1.6) and open-source implemen-
tation (Sec. 1.5), as well as the official Nexus documentation https://docs.nexus.xyz.

• For advanced readers and cryptographers: we recommend reading the Introduction (Sec. 2),
and the historical Background (Sec. 3). For an in depth technical understanding of the Nexus
zkVM, we recommend Section 4 and onwards.

For questions, feedback, or to get involved, please reach out to us at hello@nexus.xyz.

1.1 The Nexus zkVM

We introduce the Nexus zkVM, a machine capable of proving any computation. Our implementation is
fully open source1. The zkVM focuses on proving very large computations (say, 1B+ CPU cycles). It
achieves this through extreme parallelization: the zkVM realizes lightweight and unbounded Incremen-
tally Verifiable Computation (IVC) [Val08], a primitive that allows proofs of correct computation to be
computed and updated incrementally, through the use of modern high-speed recursive zero-knowledge
proof systems (i.e. folding / accumulation schemes) [KST22; KS22; KS23b; KS23a; BC23]. These tech-
niques allow for high-speed proof accumulation (see Fig 1), without using SNARKs at all.

Proof accumulation (without SNARKs), see Fig 1, is a novel technique that allows proofs to be
combined and aggregated, which in itself allows proof generation to be performed efficiently in a large-scale
network of untrusted computers. Through this, the zkVM effectivelly realizes the notion of Proof-Carrying
Data (PCD) [CT10], a generalization of IVC to the distributed setting, wherein proof computation is
performed by a distributed prover network. However, realizing high-speed IVC through SNARK-less
recursion comes at the expense of large proofs. To tackle this, we compress the final accumulated proof
with a recursive sequence of SNARKs.

Execution Sequence. The Nexus zkVM execution sequence is separated into three stages, with an
additional one-time setup phase. See Fig. 2 for a visual representation.

1https://github.com/nexus-xyz/nexus-zkvm

3

https://docs.nexus.xyz
https://github.com/nexus-xyz/nexus-zkvm

Figure 1: An r-ary proof accumulation tree of depth η, without SNARKs.

• One-time setup. Optionally specify a custom machine architecture Ξ = [F1, . . . , Fℓ] as a list of
ℓ additional CPU instructions, and generate public parameters for the system. This only needs to
be done once for a given machine architecture.

The machine Ξ can be, for example, the empty list Ξ = [] (i.e. default execution on the NVM,
see Sec. 1.2), a single circuit Ξ = [F1] (e.g. BLS signature aggregation [BLS01]), a full machine
architecture (e.g. EVM [Woo+14], RISC-V [WLPA14], Wasm [Haa+17]), or a list of custom user-
defined instructions (e.g. SHA-256, ECDSA sign) that extend the NVM.

We call these extensions zkVM co-processors, see Sec. 1.3.

Then, for every program Ψ encoded for the machine Ξ, we execute the following steps:

• Compilation. Compile the program to the Nexus Virtual Machine (NVM) instruction set. The
NVM will execute the the program Ψ on the machine Ξ.

• Execution. Execute the program on the NVM, generating the full execution trace.

• Folding. In a massively parallelized fashion, produce and accumulate IVC proofs πi for blocks of
execution. This step is the core of the proving process, and is the most computationally intensive.
However, it is extremely parallelizable, and can be done by a distributed prover network.

Every folding step requires computing a single multi-scalar multiplication (MSM). This is also the
lowest prover overhead in the context of recursive proof composition [KS23b]. In addition, MSMs
are themselves highly parallelizable, as has been well studied by industry efforts [Aas+22].

• Compression. Finally, compress the accumulated proof with a sequence of (zk)-SNARKs.

1.2 The Nexus Virtual Machine

The Nexus Virtual Machine (NVM) is a simple, minimal, and extensible Instruction Set Architecture
(ISA) and Random-Access Machine (RAM) with a von Neumann architecture that enables universal
computation. That is, it is a Universal Turing Machine. The NVM is inspired by vnTinyRAM [CGTV20]
and the RISC-V [WLPA14] ISA, but unlike the latter, it designed to maximize prover performance.
The NVM features:

• A simple CPU architecture: simple 32-bit instruction set, 40 instructions, and simplified in-
struction decoding.

4

Figure 2: The Nexus zkVM execution sequence. Here, F represents a CPU cycle on the Nexus Virtual
Machine. Step 2 (IVC / PCD) is the massively parallelized distributed SNARK-less incremental proof
generation, which happens (for technical reasons) in a 2-cycle of elliptic curves [TG14; NBS23; KS23a].

• A simple memory model: a simple 32-bit address space, with a single stack and heap, proved
incrementally with Merkle Trees [Mer87] and Poseidon hashes [Gra+21].

• A simple I/O model: a simple 32-bit input / output model, with single tapes for public input (x),
private input (w), and public output (y). Given a program Ψ, the NVM executes its instructions
according to the ISA on the public and private inputs and records the resulting output.

• Extensibility: the NVM can be extended with custom instructions, which we call zkVM co-
processors. These are user-defined instructions written as CCS circuits [STW23a], a generalization
of R1CS [GGPR13], Plonkish [GWC19; CBBZ23], and AIR [BBHR19; Sta21; BCKL22], that extend
the NVM instruction set, and can be used to accelerate custom instructions, without affecting per-
cycle prover performance. Nexus co-processors are thus conceptually similar to EVM precompiles
[Woo+14].

The Nexus zkVM can be seen as a combination of the NVM (the computational model) and a proof
system (the prover). The zkVM runs the NVM and produces exactly the same output. In addition, it
also constructs a succinct proof of correct computation. That is, the zkVM proves in zero knowledge,
knowledge of a private witness w such that Ψ(x,w) = y. Note that, due to the zk-SNARK at the end of
the compression step (see Fig. 2), the Nexus zkVM is actually zero knowledge (i.e. not only succinct)
and, assuming the prover does not leak it, it hides the (optional) private witness w.

5

Figure 3: The Nexus Virtual Machine.

1.3 The Nexus zkVM co-processors.

The notion of zkVM co-processors is a powerful one inspired by [KS22]. While in theory any program can
be proven as a sequence of CPU instructions, proving many kinds of simple programs in this model is prac-
tically infeasible. For example, proving even a single SHA-256 hash in the virtual machine model would
involve proving about 64,000 CPU cycles that emulate the SHA-256 function in-software. In contrast,
proving a manually-written SHA-256 hash circuit (like an ASIC) directly, outside of the abstraction of a
VM, would involve proving only about 30k constraints, which requires roughly 1000x less computation.
Such is the cost of abstraction.

In the traditional zkVM design (e.g. vnTinyRAM [CGTV20]), one uses universal circuits to simulate
a whole CPU. Adding a new instruction to the CPU, involves increasing the total number of constraints
proved per step, so the natural strategy is to minimize the size of the CPU being proven.

To escape this CPU vs. ASIC dilema, the Nexus zkVM introduces the concept of zkVM co-processors,
where the cost of proving custom co-processor extensions of the NVM instruction set, is only paid for by
the prover when that particular co-processor is executed by the guest program. This allows the Nexus
zkVM to maintain the developer-friendly CPU abstraction with a small Turing-complete ISA, while
allowing ASIC-like extensions on the instruction set (see Fig. 5), while only paying for the cost of those
instructions when they are actually executed. These techniques are possible due to recent advancements
in non-uniform IVC and related folding / accumulation techniques [KS22; BC23; ZGGX23; AST23;
GHK23].

In particular, zkVM co-processors allow the zkVM to accelerate custom cryptographic primitives
(e.g. SHA-256, ECDSA signatures), higher-level operations (e.g. matrix multiplications, computing
square roots, etc.), and even recursively composing with other SNARKs by injecting their verifier circuits
as custom instructions in the zkVM. The downside is that these custom-purpose circuits need to be

6

Figure 4: The Nexus Virtual Machine (NVM) Instruction Set Architecture (ISA).

Figure 5: The Nexus Virtual Machine zkVM co-processors, designed to allow for ASIC-like performance
for accelerated instructions as extensions on the NVM instruction set.

manually implemented, but they only need to be implemented once.

Simplicity and Universality. Beyond optimizing for prover performance, the NVM seeks to answer
a secondary question, of a social nature: Can we design a simple enough universal model of computation
(i.e. a concrete instantiation of the Universal Turing Machine), such that a proof of computation on the
NVM is universally convincing?

For example, consider proving the Fibonacci function Fib(n) by producing a proof π1 through em-
ulation of an x86 machine (with 2120 potential instructions, and large architectural complexity), versus
obtaining a proof π2 through emulation on a say, 32-instruction machine, with only basic ADD, SUB,
XOR, etc. instructions. Which proof, π1 or π2, might be more convincing as a faithful proof of the Fib(n)
computation? Which proof, π1 or π2, might be more convincing to someone living 10 years in the future?
Which verifier circuit might be simpler to implement and audit?

1.4 The Nexus Network

The Nexus project seeks to enable verifiable computation at Internet scale. To this end, we present a
system by which the total throughput of the Nexus zkVM can be increased by orders of magnitude.
We call this system the Nexus Network, a system that aggregates the collective CPU / GPU power of
a heterogeneous computer network to instantiate an extremely parallelized large-scale proof generation

7

system for the Nexus zkVM. This allows the zkVM to operate at a scale (measured in CPU cycles proved
per second) proportional to the collective computing power of the network.

Distributed Supercomputers. Large-scale volunteer computing over the Internet has seen great
success in some notable projects. These projects have harnessed the collective computing power of
millions of volunteers to solve large-scale scientific problems, with the total computing power of these
systems measured in FLOPS (floating point operations per second). Examples include:

• The Great Internet Mersenne Prime Search (GIMPS) [96] in 1996, reaching 14 teraFLOPS in the
early 2004s.

• SETI@Home [And+02] in 1999 from NASA, which received the 2008 Guinness World Records for
the largest computation in history, reaching 668 teraFLOPS.

• Folding@Home [Beb+09] in 2000 from Stanford University, reaching 2.43 exaFLOPS, making it the
first exaFLOP computing system.

The Nexus Network seeks to do the same, but for the problem of verifiable computation. Thus, the
Nexus Network can be seen as a distributed verifiable supercomputer, that allows the zkVM to scale its
throughput in a way proportional to the collective computing power of the network.

(a) Tree view. (b) Aerial view.

Figure 6: The Nexus Network. Proof aggregation happens in a tree-like fashion.

Verifiability in Distributed Computation. The projects mentioned above relied on varied heuristics
for ensuring the integrity of the distributed computation. For example, SETI@Home relied on replicating
computations between multiple nodes, and then comparing results amongst them. If there was a dis-
agreement, the computation would be repeated with another randomly selected set of volunteers. This
gave at best probabilistic guarantees on the integrity of the computation.

In contrast, the Nexus Network gives provable guarantees on the integrity of the distributed compu-
tation, as the output itself is a proof. Note that this is not only true of the final proof, but also of all the
intermediate proofs in the incrementally verifiable computation. For the first time, such a distributed
verifiable computation system is practically possible due to the instantiation of the Proof-Carrying Data
system based on the high-speed recursive proof aggregation techniques of the Nexus Network.

8

A Verifiable Supercomputer. Thus, we pose a bold question:

Can we unite the world’s computers into a single, verifiable supercomputer?

In particular, we think that, provided enough computing power, the Nexus zkVM may reach trillions of
CPU cycles proved per second, and so be able to prove computations that are orders of magnitude larger
than what is currently possible. The Nexus Network is the first step towards this vision.

Practical matters. The Nexus zkVM partitions the proving process into chunks of computation, which
can be arbitrarily small, and then accumulates proofs incrementally. Thanks to this, the Nexus provers
can operate with as little as 1GB of RAM. This allows even small devices like smartphones, and laptops
to participate in the network and supply useful compute. In practice, we expect large powerful provers
to dominate the supply of compute in the system, as clusters of GPUs, FPGAs or ASICs, optimized for
computing MSMs, are many times more powerful.

1.5 Open-Source Implementation

So what has been implemented? The Nexus zkVM and the Nexus Network are fully open source, and
both are implemented in Rust. These include:

1. Proof accumulation: Nova, CycleFold, and HyperNova. Following the original open-source
implementation of Nova [KST22] from Microsoft Research in 2022, we provide the first production-
grade implementation of the Nova and follow-up proof accumulation systems, all built from-the-
ground-up in arkworks [ark22]:

• The Nova folding scheme [KST22]

• The CycleFold multi-folding scheme [KS23a]

• The Nova + CycleFold IVC proof system (see Sec. 5.4)

• The binary-tree parallelized Nova scheme (see Sec. 5.6)

• In progress, the first implementations of CCS [STW23a] and HyperNova [KS23b]

We hope these are useful to the community and other projects as well. We are actively improving
these with new techniques [BC23; ZZD23; ZGGX23]. Our implementation presents concretely a
50k recursion overhead (measured in number of constraints) for Nova with CycleFold, and a 200k
recursion overhead for parallel Nova with CycleFold. We shall report measurements for HyperNova
in our follow-on technical paper.

2. The Nexus zkVM. An implementation of the Nexus zkVM, and all the steps in the execution
sequence: generation, compilation (witness extraction), execution, folding, and proof compression.
See Fig. 2.

Using the Nexus zkVM on any Rust program such as Example 1 is as simple as doing:

$ cargo nexus prove → $ cargo nexus verify

3. The Nexus Virtual Machine. An implementation of the NVM, and it’s arithmetized version in
R1CS, with Merkle proofs for memory checking, as well as a RISC-V-to-NVM compiler.

The NVM arithmetization, which is rather naive still, is a circuit of size 30k per CPU cycle. This
is a large circuit (mainly due to memory-checking), but we expect upcoming improved memory-
checking techniques to reduce the size of the machine by 10x, with further order-of-magnitude

9

improvements coming from the use of zkVM co-processors [KS22; ZGGX23; GHK23], and lookup
arguments [STW23b; AST23].

Normal users do not have to worry about this intermediate optimization, but it leads to significant
performance improvements from compiler optimizations, and better security due to the simplicity
of the machine.

4. The Nexus Network. An open-source implementation of the Nexus Network, featuring three
different types of nodes:

• The Nexus MSM Prover, a prover node that can be run on any machine with at least 1
GB of RAM. These nodes supply compute to the network by computing MSMs on-demand.

Supplying compute to the system is as simple as doing:

$ cargo nexus compute

• The Nexus PCD Prover, a prover node that can be run on any machine, and can supply
compute to the network by computing IVC proofs. The Nexus team currently operates these.

• The Nexus Aggregator, a node that aggregates proofs and compresses them with SNARKs,
by applying the Nexus zk-SNARK compression sequence (see Fig. 2).

5. The Nexus Proof Compression Sequence.

We present:

• A Nova-friendly zkSNARK. The first implementation (besides Microsoft’s [KST22]) of a
zk-SNARK for an aggregation-friendly generalization of R1CS: A modified Spartan [Set20] zk-
SNARK for the commited relaxed R1CS [KST22] relation, adapted from the original Spartan
arkworks [ark22] implementation for R1CS.

• An implementation of the Zeromorph [KT23] polynomial commitment scheme.

We further apply a final level of proof compression with other SNARKs [Gro16; BGH19; BGH20]
to achieve Ethereum verifiability for Nova proofs, which allows Nexus to conncect to Ethereum.
These details will be described in the technical paper.

What has not yet been implemented:

• Non-uniformity. Our current implementations do fully-uniform IVC (see Fig. 5), but not non-
uniform. Support for CCS extensions is actively being developed.

• zkVM I/O. The Nexus zkVM currently does not support I/O (e.g. loading a JSON file). All
input must be encoded in the program itself. This is a small but important limitation that will be
addressed in the comming weeks.

10

1.6 Example

1 #![no_std]

2 #![no_main]

3

4 #[nexus::main]

5 fn fib(n: u32) -> u32 {

6 match n {

7 0 => 1,

8 1 => 1,

9 _ => fib(n - 1) + fib(n - 2),

10 }

11 }

Listing 1: Example of a Rust program provable on the Nexus zkVM.

11

2 Introduction

Turing Machines. In his seminal 1936 paper [Tur+36], Turing introduced the Turing machine, a
formalization of the notion of computation. He was the first to observe that general-purpose computation
is possible and showed the existence of a universal Turing machine, a machine which can simulate the
execution of any other machine. Similarly, Kurt Gödel, Alonzo Church, and others had also arrived at
formal definitions of computation in the early 1930s, all of which ended up being identical in expressive
power.

The von Neumann Architecture. The notion of the Universal Turing Machine quickly led other
scientists, such as von Neumann, to construct implementations. Today, essentially all digital computers
follow the “von Neumann architecture” [Von93]. The Nexus VM also follows the von Neumann architec-
ture.

Classical Proofs. In 1956, Gödel wrote a letter to von Neumann [Göd56; Sip92], where he identified
how “it would have consequences of the greatest magnitude” if there existed a practical machine that
could efficiently prove mathematical theorems. As we will see, this notion is close to that of proving
computations. Gödel had essentially posed what we know today as the (still unsolved) P = NP question,
which deals with the relationship between deterministic (super-polynomial time) provers (i.e. the class
NP), (polynomial time) verifiers (i.e. the class P), and the notion of proofs2.

Zero-Knowledge Proofs. Fast forward to 1985, the story of (zero-knowledge) interactive proofs be-
gan at MIT, in a paper by Goldwasser, Micali, and Rackoff [GMR19] that introduced the class IP, a
generalization of NP that allows randomness and interaction between the prover and verifier. This fun-
damentally changed the notion of proof itself. The definition of zero-knowledge, which they introduced
as well, considers proofs that reveal nothing besides their own validity. Their paper would win the first
ever Gödel Prize.

Since then, a cambrian explosion of research introduced other notions of proofs, such as Arthur-Merlin
protocols [Bab85] (concurrent work), MIPs [BGKW19; FRS88; BFL91], PCPs [FRS88; BFLS91; AS92;
Aro+92], IOPs [BCS16], NIZK [BFM88; BSMP91], proofs of knowlede [SP92], succinct arguments and
CS proofs [Kil92; Mic94], and (zk)-SNARKs [Mic94; Gro10; BCCT12; GGPR13]. For a short recap of
the history of zero-knowledge proofs and modern techniques until present, see Section 3.

The Nexus project builds upon these works and nearly four decades of research since the invention
of zero-knowledge proofs. We believe that due to very recent scientific progress, truly scalable zero-
knowledge for the Internet era is close within the horizon.

2.1 Why are zero-knowledge proofs still not practical?

The ASIC Approach. Current typical approaches to compute zero-knowledge proofs consist in writing
arithmetic circuits, either manually (e.g. R1CS, Plonkish, AIR, etc.), through libraries like Bellman
[Zkc15] or arkworks [ark22], or through a higher-level DSL (e.g. Circom [ide21], Zokrates [Zok17], Noir
[Noi20], Leo [Chi+21], etc.) with a DSL-to-circuit compiler, and then proving the circuit with a zk-
SNARK. For the zk-SNARK, Groth16 [Gro16] is the most widely used in practice (due to practical
Ethereum compatibility and its small proof size), followed by Halo and Halo2 [BGH20]. The ASIC
approach is thus coneptually similar to designing a custom ASIC for a given computation, and then
proving the ASIC’s execution with a zk-SNARK.

2For a more precise description, see the excellent books in computational complexity theory [AB09] and [Wig19].

12

Disadvantages. Unfortunately, this approach is very error prone and requires a high degree of
expertise. Further, the DSL approach places static bounds on the programs (e.g. arrays and loops must
have a fixed size known at compile-time) [Chi+21], does not support input-dependent control flow and
memory accesses [BCTV14], and does not allow for self-modifying code. This approach also results in
a different circuit being generated for every program, which requires redeploying new verifier code to be
deployed each time, a highly impractical and often undesirable operation.

These are all large limitations in practice: even if the developer is willing to learn a new DSL or to
manually write arithmetic circuits (which is a highly non-trivial task), they will learn that most programs
are practically uncomputable in this model.

The CPU Approach. A modern approach, introduced in [BCTV14], is to prove computer programs
as opposed to arithmetic circuits. This is done by emulating a CPU or Virtual Machine (VM), by
implementing the full VM as a single universal circuit. In this model, the size N of the universal circuit
is proportional to the sum of the sizes of the instructions in its instruction set. Then, a sequence of state
transitions of the VM is proven by glue-ing many such universal circuits together, up to a static bound T
on the runtime of the program, and then proving the (N ·T)-sized circuit with a SNARK. This approach
was introduced by TinyRAM [CGTV20], and has resulted in industry applications like the Cairo zkVM
[GPR21] and other zkEVM projects for the Ethereum Virtual Machine.

Advantages. The advantage of this approach is better developer experience. Writing programs for
a pre-existent or well-defined ISA is significantly simpler, as developers can exploit tooling and compiler
infrastructure. Moreover, since the circuit is universal, only a single verifier needs to be deployed (this is
in practice a significant advantage). Further, the large effort of writing the universal circuit for a given
VM like the EVM (a very large effort that has taken months or years to complete to serveral projects)
only needs to be done once, and then any program for that ISA, up to the specified time bound T , can
be proven.

Disadvantages. However, the CPU approach has several disadvantages, mainly related to perfor-
mance and scalability.

1. Bounded computation. This approach requires deciding on a static bound T on the runtime
of all possible program executions. Proving beyond T cycles requires either (1) generating new
public parameters and deploying a new verifier for a new bound T ′ (increasing also prover time
and memory) [Ben+13; BCTV14], or (2) doing SNARK recursion [BGH20; BCMS20; Bün+21;
CGSY23].

2. High cost of SNARK recursion. The second option consists in proving executions in chunks
of size T and “glue-ing” the proofs together by writing the full SNARK verifier itself as a circuit
(which is in practice very hard to do), and proving that the SNARK verifier at step i has accepted
the SNARK proof from step i − 1. This approach is extremely costly and is well-known to be
impractical [BCTV17; CCDW20; KST22]. In practice, this has led projects like TinyRAM, the
Cairo zkVM, and other zkEVM projects, to consume large computational resources while only
being able to prove practically small programs (e.g. smart contracts).

3. Low performance due to emulation. However, this approach faces serious scalability issues.
First, the VM abstraction leads to much larger circuits than circuits that do not. For example,
proving a keccak256 hash, verifying an ECDSA signature, or aggregating BLS signatures through
emulation consists on proving tens of thousands or millions of CPU cycles, as these operations have
to be emulated within the CPU abstraction [GPR21]. Secondly, proving T copies of a universal
circuit requires large prover machines with very large memory (e.g. about 100 GBs of RAM),
necessary to materialize the (T ·N)-sized witness.

13

4. Practical security. Lastly, these techniques are hardly auditable. Even if one implements a whole
VM as a circuit (after months or years of effort), and say, a full SNARK verifier as a circuit as
well (for recursion), it is still hard to convince oneself that the circuits are actually implemented
correctly, and have no vulnerabilities [OWBB23; CMS23; Cog+23]. Even a single missing constraint
in the circuit implementation would lead to a full soundness exploit (e.g. as shown in [NBS23]),
and the verifier would accept invalid proofs.

2.2 The Nexus System

The Nexus system addresses the above limitations in scalability:

• The Nexus Network. The network addresses problems (1) and (2), through unbounded SNARK-
less recursion and high-speed proof aggregation. In other words, the Nexus zkVM can connect to
the Nexus Network and perform massively parallelized proving of unbounded computations in a
distributed prover network, which partitions and aggregates proofs incrementally.

• The Nexus zkVM. The Nexus zkVM addresses problems (3) and (4), through the NVM and
the use of zkVM co-processors, which allow for ASIC-like performance for accelerated instructions
in the NVM instruction set. This allows the Nexus zkVM to maintain the developer-friendly
CPU abstraction with a small Turing-complete ISA, while allowing ASIC-like extensions on the
instruction set. Further, the NVM is extremely simple, auditable and highly modular.

We hope that these two systems combined will allow developers to focus on declaratively writing, in any
programming language, what they want to prove, and simply receive a proof within seconds.

We believe users should not have to think through the complex (and highly non-trivial) security and
performance properties behind the 40+ years of zero-knowledge research and related high-performance
engineering that power the Nexus system.

14

3 Background

We briefly review the history of scientific advancements that have led us up to this point in time. As we
shall see, we seem to sit at the brink of a time where a new form of computation, verifiable computation,
becomes available to humanity. We believe it is very few times in a civilization’s history that a new form
of computation is introduced, and we are excited to be part of this moment.

The Nexus project builds on the shoulders giants: great scientists and mathematicians, and their
decades-long work. For an in-depth discussion, see Goldreich’s excellent article [Gol93] A Taxonomy of
Proof Systems, or the summary in Ben-Sasson et al. [BCS16], both upon which we base our discussion.

Interactive Proofs. Goldwasser, Micali, and Rackoff [GMR19] introduced interactive proofs in 1985.
In a k-round interactive proof, a probabilistic polynomial time verifier exchanges k messages with an all
powerful prover, and then accepts or rejects. IP[k] is the class of languages with a k-round interactive
proof, which generalizes the class NP by allowing randomness and interaction between the prover and
verifier. Independently, Babai introduced Arthur-Merlin games [Bab85]. AM[k] is the class of languages
with a k-round Arthur–Merlin game. Goldwasser and Sipser [GS86] showed that the two models are
equally powerful, that is IP[k] ⊆ AM[k + 2]. In 1992, Lund, Fortnow, Karloff, and Nisan [LFKN92]
introduced the sum-check (interactive proof) protocol [LFKN92] (which now powers most of our system,
see Sec. 4.1, and our implementations for the [Set20; KS23b; STW23a] protocols), and Shamir [Sha92],
building on this, showed that IP = PSPACE. The latter was a major result showing that interactive
proofs are more powerful than previously thought.

Multi-prover interactive proofs (MIPs). Ben-Or, Goldwasser, and Widgerson [BGKW19] intro-
duced multi-prover interactive proofs in 1988. In a k-round p-prover interactive proof, a probabilistic
polynomial-time verifier interacts k times with p non-communicating all-powerful provers, and then ac-
cepts or rejects. MIP[p, k] is the class of languages that have a k-round p-prover interactive proof. In
[BGKW19], the authors prove that 2 provers always suffice (i.e. MIP[p, k] = MIP[2, k]). Fortnow, Rompel,
and Sipser [FRS88] show that MIP[poly(n), poly(n)] ⊆ NEXP. Two years later, Babai, Fortnow and Lund
[BFL91] showed that MIP[2, 1] = NEXP.

Probabilistically checkable proofs (PCPs). Probabilistically checkable proofs were introduced by
[FRS88; BFLS91; AS92; Aro+92]. In a probabilistically-checkable proof, a probabilistic polynomial-time
verifier has oracle access to a proof string; PCP[r, q] is the class of languages for which the verifier uses
at most r bits of randomness, and queries at most q locations of the proof. The above results on MIPs
imply that PCP[poly(n), poly(n)] = NEXP. Later works “scaled down” this result to NP: Babai, Fortnow,
Levin and Szegedy [BFLS91] show that NP = PCP[O(log n), poly(log n)]; Arora and Safra [AS92] show
that NP = PCP[O(log n), O(

√
log n)]; and Arora, Lund, Motwani, Sudan, and Szegedy [Aro+92] showed

that NP = PCP[O(log n), O(1)]. This last is known as the PCP Theorem, a major result in complexity
theory, and another a paper that would win the Gödel Prize.

Argument systems In cryptography, one often considers argument systems, which are IPs where
soundness is relaxed from perfect to only computational. This allows circumventing various well-known
limitations of IPs [BHZ87; PS05]. Kilian [Kil92] provided the first construction of a succinct interactive
argument system by employing PCPs in conjunction with Merkle trees [Mer87]. Micali [Mic94] through
his computationally sound proof construction made a similar protocol non-interactive in the random oracle
model [BR93] by applying the Fiat-Shamir transform [FS86], thereby obtaining the first zk-SNARK.

The Random Oracle Model (ROM). An idealized model for studying computationally-bounded
provers is the Random Oracle Model (ROM) [BR93; CGH04; KM15]. At a high level, the ROM is a

15

model where the prover has access to a random oracle, which is a function that returns random outputs for
each input. The ROM is used in conjunction with the Fiat-Shamir transform [FS86] to compile interactive
proofs into non-interactive ones, yielding NARKs (non-interactive argument systems) [BCCT12]. See Sec.
4.2 for the definition of NARKs.

zk-SNARKs Many works have obtained SNARK and zk-SNARK constructions [Kil92; Mic94]. Af-
ter Micali, Lipmaa [DL08] obtained a construction based on added assumptions. Groth [Gro10] ob-
tained the first pairing-based zk-SNARK. In practice, the most widely used zk-SNARK in industry is
Groth16 [Gro16] due to its small proof size. Other constructions that have seen success are Halo and
Halo2 [BGH20], Plonk [GWC19], Spartan [Set20], Marlin [Chi+20], HyperPlonk [CBBZ23], Bulletproofs
[Bün+18], and others [Wah+18; MBKM19; Xie+19; AHIV17; Ben+19; ZXZS20; Gol+21; XZS22].

Interactive Oracle Proofs (IOPs). IOPs were introduced by Ben-Sasson, Chiesa, and Spooner
[BCS16]. An IOP is a generalization of IPs, MIPs and PCPs, that can compiled to SNARKs using
a suitable commitment scheme. Using a univariate polynomial commitment scheme, one can compile
Polynomial-IOPs to SNARKs, yielding protocols like Sonic [MBKM19], Marlin [Chi+20], and Plonk
[GWC19]. Using multilinear polynomial commitment schemes, one can combine multilinear-IOPs to
SNARKs, yielding protocols like Hyrax [Wah+18], Libra [Xie+19], and Spartan [Set20]. Using vec-
tor commitment schemes, one can compile vector-IOPs to SNARKs, yielding protocols like STARK
[BBHR18b], Aurora [Ben+19], Virgo [ZXZS20], Brakedown [Gol+21], and Orion [XZS22], generally all
known as STARKs. While STARKs have the benefit of requiring no trusted setup and being plausibly
post-quantum secure, they have large proof sizes (e.g. tens of kilobytes) and long verification times, and
are therefore impractical for recursion.

Incrementally Verifiable Computation (IVC). Incrementally Verifiable Computation (IVC) was
introduced in 2008 at MIT by Valiant [Val08]. As mentioned, IVC is the setting in which the prover
runs a computation and incrementally updates proofs of correctness for it. Valiant also showed how to
construct IVC through the recursive composition of SNARKs.

Proof-Carrying Data (PCD). Proof-Carrying Data (PDC) was introduced by Chiesa and Tromer
[CT10], and generalizes IVC to the distributed setting, allowing mutually distrustful parties to perform
distributed verifiable computations. In particular, PCD enables the parallel distributed computation of
proofs in a DAG, which is sequential in the case of IVC.

PCD from SNARKs. A well-known approach to construct PCD / IVC is to use SNARKs for NP.
At each step of the computation, the prover produces a SNARK proving that it has applied a function F
correctly and that the SNARK verifier itself, represented as a circuit, has accepted the SNARK proof from
the previous step. However, it is well-known that this approach is impractical [BCTV17; CCDW20], as
recursive composition of SNARKs incurs in very significant overhead. Alternatively, one can use SNARKs
without trusted setup (STARKs), but their verifiers are even more expensive than SNARKs with trusted
setup, both asymptotically and concretely. As mentioned above, this makes STARKs impractical for
recursion.

SNARKs for Virtual Machines and Cycles of Elliptic Curves. Following the work on IVC by
Valiant, and theoretical work in recursive SNARKs [BCCT13], Ben-Sasson, Chiesa, Tromer and Virza
[BCTV17] introduced the notion of cycles of elliptic curves (which we use extensively, see [KST22; NBS23;
KS23a], Sec. 5.4, and Fig. 2) that are useful (almost necessary, if using KZG [KZG10] or Pedersen [Ped91]
commitments, as opposed to FRI [BBHR18a]) to make recursive composition of SNARKs practical.
Following this, Ben-Sasson, Chiesa, Tromer, Genkin and Virza built the first implementation of IVC for

16

a simple virtual machine with Harvard architecture, TinyRAM [Ben+13]. The authors later provided the
first construction of IVC for a virtual machine with von Neumann architecture, vnTinyRAM [BCTV14].
The vnTinyRAM construction later inspired the Cairo zkVM [GPR21] project, which now powers the
Starkware [Sta22] zk-rollup [LNS20]. The vnTinyRAM project is an inspiration for the Nexus zkVM.

Accumulation. A recent line of work proposes the idea of batch verification of NP statements to reduce
the prover overhead in constructing IVC / PCD. Bowe, Grigg and Hopwood constuct Halo [BGH19] by
proposing an approach to recusive proof composition that replaced the SNARK verifier with a simpler
accumulator algorithm, deferring full verification at the end of the IVC chain. Bünz, Chiesa, Mishra,
and Spooner [BCMS20] formally defined accumulation schemes, and show they suffice to construct PCD.
Following this, [Bün+21] show how to construct PCD from any NARK that satisfies a weak type of
accumulation.

Folding Schemes. Folding Schemes were introduced by Kothapalli, Setty and Tzialla [KST22] in 2022
as a way to realize IVC without SNARKs by aggregating proofs for the NP statements themselves directly.
Follow up work improves or generalizes Nova, including SuperNova [KS22], HyperNova [KS23b], CycleFold
[KS23a], Protostar [BC23], ProtoGalaxy [EG23], PCD fromMulti-folding Schemes [ZZD23], and KiloNova
[ZGGX23]. The fundamental concept behind folding schemes is to leverage the homomorphic property
of commitments (e.g. Pedersen commitments [Ped91]) to accumulate verification of each sequential step
of IVC/PCD into a single instance, and so defer full verification at the end of the IVC/PCD chain.

17

4 Preliminaries

We adapt the definitions from [KST22; KS22; KS23b; KS23a; STW23a; Set20; AST23; BCMS20;
Bün+21; BC23; ZZD23].

4.1 The Sum-Check Protocol

Let g : Fℓ → F be an ℓ-variate polynomial defined over a finite field F, where the degree of each variable in
g is at most d. Consider the problem of summing up the evaluations of g over the ℓ-dimensional Boolean
hypercube

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xℓ∈{0,1}

g(x1, x2, . . . , xℓ),

which requires exponential time in ℓ, as it requires evaluating g at O(2ℓ) points. The sum-check protocol
[LFKN92] is an interactive protocol allowing a verifier V to delegate the computation of T to a computa-
tionally unbounded prover P, so that P may convince V that T is the correct sum, and V may check this
claim in time polynomial in ℓ. In the protocol, V takes as input randomness r ∈ Fℓ, and interacts with P
over a sequence of ℓ rounds. At the end of the interaction, V outputs a claim about the evaluation g(r).
We denote the execution of the sum-check protocol as

c← ⟨P,V(r)⟩(g, ℓ, d, T),

and it satisfies the following properties.

• Completeness. If T =
∑

x∈{0,1}ℓ g(x), then for all r ∈ Fℓ,

Pr [c← ⟨P,V(r)⟩(g, ℓ, d, T) ∧ g(r) = c] = 1.

• Soundness. If T ̸=
∑

x∈{0,1}ℓ g(x), then for all P∗ and all r ∈ Fℓ,

Pr [c← ⟨P∗,V(r)⟩(g, ℓ, d, T) ∧ g(r) = c] ≤ d · ℓ/|F|

• Succinctness. The communication cost is O(ℓ · d) elements of F.

4.2 Non-Interactive Arguments of Knowledge (NARKs)

Definition 4.1 (NARK). Let R be a relation over tuples (pp, s, u, w) of public parameters, structures,
instances and witnesses. A non-interactive argument of knowledge (NARK) for R is a four-tuple of
PPT algorithms (G,K,P,V), denoting the generator, encoder, prover, and verifier, respectively, with the
following interface.

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp, s)→ (pk, vk): Given a structure s, outputs a prover key pk and verifier key vk.

• P(pk, u, w)→ π: Given an instance u and witness u, outputs a proof π proving that (pp, s, u, w) ∈ R.

• V(vk, u, π)→ {0, 1}: Given an instance u and a proof π, outputs 1 (accept) or 0 (reject).

A NARK scheme (G,K,P,V) must satisfy the following requirements.

• Completeness. For any PPT adversary A

Pr

V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, w)← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← P(pk, u, w)

 = 1

18

• Knowledge Soundness. For all PPT adversaries A there exists a PPT extractor E such that, for
all randomness ρ

Pr

 V(vk, u, π) = 1,
(pp, s, u, w) ̸∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, π)← A(pp; ρ),
(pk, vk)← K(pp, s)
w ← E(pp; ρ)

 ≤ negl(λ)

Definition 4.2 (Zero Knowledge). A NARK (G,K,P,V) for a relation R is zero knowledge if there exists
a PPT simulator S such that for all PPT adversaries A(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, w)← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← P(pk, u, w)

∼=

(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
(pp, τ)← S(1λ),
(s, u, w)← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← S(pp, u, τ)

Definition 4.3 (Succinctness). A NARK is succinct, if the size of the proof π and the verifier’s time and
space complexity are at most polylogarithmic in the size of the witness w.

4.3 Incrementally Verifiable Computation (IVC)

Definition 4.4 (IVC). An incrementally verifiable computation (IVC) scheme is a four-tuple of PPT
algorithms (G,K,P,V), denoting the generator, encoder, prover, and verifier, respectively, with the fol-
lowing interface.

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp, F) → (pk, vk): Given a polynomial-time function F , outputs a prover key pk and a verifier
key vk.

• P(pk, (i, z0, zi), ωi,Πi) → Πi+1: Given a counter i, an initial input z0, a claimed output after i
iterations zi, a non-deterministic advice ωi, and an IVC proof Πi, produces a new IVC proof Πi+1

attesting to zi+1 = F (zi, ωi).

• V(vk, (i, z0, zi),Πi)→ {0, 1}: Given a counter i, an initial input z0, a claimed output after i iterations
zi, and an IVC proof Πi attesting to zi, outputs 1 (accept) or 0 (reject).

An IVC scheme (G,K,P,V) must satisfy the following properties.

• Perfect Completeness. For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1),Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
(F, (i, z0, zi), ωi,Πi)← A(pp),
(pk, vk)← K(pp, F),
zi+1 ← F (zi, ωi),
V(vk, (i, z0, zi),Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi,Πi)

 = 1

• Knowledge Soundness. For any constant n ∈ N, and for any PPT adversaries P∗ there exists a
PPT extractor E such that, for all randomness ρ

Pr

 zn ̸= z,
V(vk, (n, z0, z),Π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(F, (z0, z,Π))← P∗(pp; ρ),
(pk, vk)← K(pp, F),
(ω0, . . . , ωn−1)← E(pp; ρ),
zi+1 ← F (zi, ωi) ∀i ∈ {0, . . . , n− 1}

 ≤ negl(λ)

• Succinctness. The size of an IVC proof Π is independent of the number of iterations n.

19

4.4 Non-uniform Incrementally Verifiable Computation (NIVC)

Non-uniform IVC (NIVC) generalizes IVC to handle an arbitrary number of polynomial-time functions
(F1, . . . , Fℓ), where the choice of which Fj for j ∈ [ℓ] is executed at each step i is determined by an
additional polynomial-time control function φ, invoked as j ← φ(zi−1, ωi−1).

More succinctly, for a given (φ, (F1, . . . , Fℓ)) and (n, z0, zn) an NIVC scheme allows the prover to
prove knowledge of intermediate outputs (z1, . . . , zn−1) and non-deterministic advice (ω0, . . . , ωn−1) such
that

zi+1 = Fφ(zi,ωi)(zi, ωi)

for all i ∈ {0, . . . , n− 1}.

Definition 4.5 (NIVC). A non-uniform incrementally verifiable computation (NIVC) scheme is a four-
tuple of PPT algorithms (G,K,P,V), denoting the generator, encoder, prover, and verifier, respectively,
with the following interface.

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp, (φ, (F1, . . . , Fℓ)))→ (pk, vk): Given a control function φ, and functions (F1, . . . , Fℓ), outputs
a prover key pk and verifier key vk, where ℓ ≥ 1, φ produces an element in {1, . . . , ℓ}, and φ and
Fj for j ∈ {1, . . . , ℓ} are polynomial-time computable functions.

• P(pk, (i, z0, zi), ωi,Πi) → Πi+1: Given a counter i, an initial input z0, a claimed output after i
applications zi, a non-deterministic advice ωi, and an NIVC proof Πi attesting to zi, outputs a new
proof Πi+1 attesting to zi+1 = Fφ(zi,ωi)(zi, ωi).

• V(vk, (i, z0, zi),Πi)→ {0, 1}: Given a counter i, an initial input z0, a claimed output after i appli-
cations zi, and an NIVC proof Πi, outputs 1 (accept) or 0 (reject).

An NIVC scheme (G,K,P,V) must satisfy the following properties.

• Perfect Completeness. For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1),Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
(φ, (F1, . . . , Fℓ), (i, z0, zi), ωi,Πi)← A(pp),
(pk, vk)← K(pp, (φ, (F1, . . . , Fℓ))),
V(vk, (i, z0, zi),Πi) = 1,
zi+1 ← Fφ(zi,ωi)(zi, ωi),

Πi+1 ← P(pk, (i, z0, zi), ωi,Πi)

 = 1

• Knowledge Soundness. For any constant n ∈ N, and for any PPT adversaries P∗, there exists a
PPT extractor E such that, for all randomness ρ

Pr

 z ̸= zn
V(vk, (n, z0, z),Π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(φ, (F1, . . . , Fℓ), (z0, z,Π))← P∗(pp; ρ),
(pk, vk)← K(pp, (φ, (F1, . . . , Fℓ))),
(ω0, . . . , ωn−1)← E(pp; ρ),
zi+1 ← Fφ(zi,ωi)(zi, ωi), ∀i ∈ {0, . . . , n− 1}

 ≤ negl(λ)

• Succinctness. The size of an IVC proof Π is independent of the number of applications n.

• Efficiency. The prover’s time and space complexity are linear in the size of the function applied
at step i, i.e. O(|Fφ(zi,ωi)|).

20

4.5 Proof-Carrying Data

Definition 4.6 (PCD Transcript). We define a PCD transcript T to be a directed acyclic graph where
each vertex v ∈ V (T) is labeled by local data ω(v) and each edge e ∈ E(T) is labeled by a message z(e).
We define the output of a transcript o(T) as the message z(e) of the lexicographically-first edge e = (u, v)
such that v is a sink.

Definition 4.7 (PCD Compliance). Let φ be a predicate. We define a vertex u ∈ V (T) to be φ-compliant
if for all outgoing edges e = (u, v) ∈ E(T):

• If u has no incoming edges, then φ(z(e), ω(u), [⊥, . . . ,⊥]) = 0.

• If u has incoming edges [ei]
r
i=1, then φ(z

(e), ω(u), [z(ei)]ri=1) = 1.

We say T is φ-compliant, if all its vertices are φ-compliant. We use the notation φ(T)→ {0, 1} to denote
the φ-compliance of T.

Definition 4.8 (PCD [Bün+21]). A proof-carrying data (PCD) scheme is a four-tuple of PPT algorithms
(G,K,P,V) denoting the generator, encoder, prover, and verifier, respectively, with the following interface.

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp, φ)→ (pk, vk): Given a compliance predicate φ, outputs a prover key pk and a verifier key vk.

• P(pk, z, ω, [zi,Πi]
r
i=1) → Π: Given a message z, local data ω, messages [zi]

r
i=1 and corresponding

PCD proofs [Πi]
r
i=1, outputs a new proof Π attesting to φ(z, ω, [zi]

r
i=1) = 1.

• V(vk, z,Π)→ {0, 1}: Given a message z and a PCD proof Π, outputs 1 (accept) or 0 (reject).

A PCD scheme (G,K,P,V) must satisfy the following properties.

• Perfect Completeness. For any PPT adversary A

Pr

V(vk, z,Π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
(φ, z, ω, [zi,Πi]

r
i=1])← A(pp),

(pk, vk)← K(pp, φ),
φ(z, ω, [zi]

r
i=1) = 1,

∀i ∈ [r], V(vk, zi,Πi) = 1,
Π← P(pk, z, ω, [zi,Πi]

r
i=1)

 = 1

• Knowledge Soundness. For any PPT adversaries P∗, there exists a PPT extractor E such that,
for all randomness ρ

Pr

 V(vk, z,Π) = 1,
o(T) = z ∧ φ(T) = 0

∣∣∣∣∣∣∣∣
pp← G(1λ),
(φ, z,Π)← P∗(pp; ρ),
(pk, vk)← K(pp, φ),
T← E(pp; ρ)

 ≤ negl(λ)

• Succinctness. The size of a PCD proof Π is independent of the size of T.

21

4.6 Folding Schemes

Definition 4.9 (Folding Scheme [KST22]). Let R be a relation over tuples (pp, s, u, w) of public pa-
rameters, structures, instances and witnesses. A folding scheme for R is a four-tuple of PPT algorithms
(G,K,P,V), denoting the generator, encoder, prover, and verifier, respectively, with the following inter-
face.

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp, s)→ (pk, vk): Given a structure s, outputs a prover key pk and a verifier key vk.

• P(pk, (u1, w1), (u2, w2)) → (u,w): Given instance-witness tuples (u1, w1) and (u2, w2), outputs a
new instance withness tuple (u,w) of the same size.

• V(vk, u1, u2)→ u: Given instances u1 and u2, outputs a new instance u.

Let ⟨P,V⟩ denote a function computing the interaction between P and V, invoked as

(u,w)← ⟨P,V⟩((pk, vk), (u1, u2), (w1, w2))

where ⟨P,V⟩ runs the interaction on prover input (pk, (u1, w1), (u2, w2)) and verifier input (vk, u1, u2),
and where u is the verifier’s output folded instance and w is the prover’s output folded witness.

A folding scheme (G,K,P,V) is required to satisfy the following requirements:

• Perfect Completeness. For any PPT adversary A

Pr

(pp, s, u, w) ∈ R
∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← K(pp, s),
(u,w)← ⟨P,V)((pk, vk), (u1, u2), (w1, w2))

 = 1

• Knowledge Soundness. For any PPT adversaries A and P∗ there exists a PPT extractor E such
that, for all randomness ρ

Pr

(pp, s, u, w) ∈ R
∣∣∣∣∣∣∣∣
pp← G(1λ)
(s, (u1, u2), τ)← A(pp; ρ)
(pk, vk)← K(pp, s)
(u,w)← ⟨P∗,V⟩((pk, vk), (u1, u2), τ)

−

Pr

 (pp, s, u1, w1) ∈ R
(pp, s, u2, w2) ∈ R

∣∣∣∣∣∣
pp← G(1λ)
(s, (u1, u2), τ)← A(pp; ρ)
(w1, w2)← E(pp; ρ)

 ≤ negl(λ)

• Efficiency. The communication costs and V’s computation are lower when P and V participate
in the folding scheme, than the case in which V checks the witnesses individually for the original
instances.

Let
tr← trace(⟨P,V⟩, input)

denote the interaction transcript of running ⟨P,V⟩ on input input.

22

Definition 4.10 (Zero Knowledge). A folding scheme (G,K,P,V) for R satisfies zero knowledge if there
exists a PPT simulator S such that for all PPT adversaries A and V∗, and all randomness ρtr

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← K(pp, s),
tr← trace(⟨P,V∗(ρ)⟩, ((pk, vk), (u1, u2), (w1, w2)))

∼=

tr

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← K(pp, s),
tr← S((pk, vk), (u1, u2); ρ)

Definition 4.11 (Non-Interactive). A folding scheme (G,K,P,V) is non-interactive if the interaction
between P and V consists of a single message from P to V. In this case, we update the function
signatures of P and V to include the message as an output of P and as an input to V, as follows:

• P(pk, (u1, w1), (u2, w2))→ (u,w, π) • V(vk, (u1, u2), π)→ u

Definition 4.12 (Public-coin). A folding scheme (G,K,P,V) is called public-coin if all messages sent
from V to P are sampled from a uniform distribution.

4.7 Multi-Folding Schemes

Definition 4.13 (Multi-Folding schemes [KS23b]). Let R1 and R2 be relations over tuples (pp, s, u, w)
of public parameters, structures, instances and witnesses, let compat be a predicate that R1 and R2 struc-
tures should satisfy, and let µ, ν ∈ N be size parameters. A multi-folding scheme ΠMFS for (R1,R2, compat, µ, ν)
is a four-tuple of PPT algorithms (G,K,P,V) denoting the generator, encoder, prover, and verifier, with
the following interface:

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp, (s1, s2))→ (pk, vk): Given public parameters pp and structures (s1, s2), outputs a prover key
pk and a verifier key vk.

• P(pk, (u⃗1, w⃗1), (u⃗2, w⃗2)) → (u,w): Given an instance-witness vector pair (u⃗1, w⃗1) of length µ with
elements of structure s1 inR1, and an instance-witness vector pair (u⃗1, w⃗1) of length ν with elements
of structure s2 in R2, outputs an instance-witness pair (u,w) in R1.

• V(vk, (u⃗1, u⃗2))→ u: Given a vector of instances u⃗1 of length µ with elements in R1 and a vector of
instances u⃗2 of length ν with elements in R2, outputs a new folded instance u in R1.

Let ⟨P,V⟩ denote the the interaction between P and V treated as a function that takes input ((pk, vk), (u⃗1, u⃗2), (w⃗1, w⃗2))
and runs the prover-verifier interaction on prover input (pk, (u⃗1, w⃗1), (u⃗2, w⃗2)) and verifier input (vk, (u⃗1, u⃗2)).
At the end of the interaction, ⟨P,V⟩ outputs the folded instance-witness tuple (u,w).

A multi-folding scheme (G,K,P,V) for (R1,R2, compat, µ, ν) must satisfy the following requirements.

23

• Perfect Completeness. For all PPT adversaries A:

Pr

(pp, s1, u, w) ∈ R1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
((s1, s2), (u⃗1, u⃗2), (w⃗1, w⃗2))← A(pp),
compat(s1, s2) = 1,

(pp, s1, u⃗1, w⃗1),∈ R(µ)
1 ,

(pp, s2, u⃗2, w⃗2),∈ R(ν)
2 ,

(pk, vk)← K(pp, (s1, s2)),
(u,w)← ⟨P,V⟩((pk, vk), (u⃗1, u⃗2), (w⃗1, w⃗2))

= 1

• Knowledge Soundness. For all PPT adversaries A and P∗ there exists a PPT extractor E such
that, for all randomness ρ

Pr

(pp, s1, u, w) ∈ R1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
((s1, s2), (u⃗1, u⃗2), τ)← A(pp; ρ)
compat(s1, s2) = 1,
(pk, vk)← K(pp, (s1, s2)),
(u,w)← ⟨P∗,V⟩((pk, vk), (u⃗1, u⃗2), τ)

−

Pr

 (pp, s1, u⃗1, w⃗1) ∈ R(µ)
1

(pp, s2, u⃗2, w⃗2) ∈ R(ν)
2

∣∣∣∣∣∣∣∣
pp← G(1λ),
((s1, s2), (u⃗1, u⃗2))← A(pp; ρ),
compat(s1, s2) = 1,
(w⃗1, w⃗2)← E(pp; ρ)

 ≤ negl(λ)

• Efficiency. The communication and computation costs are lower in the multi-folding scheme than
checking the instance-witness pairs individually.

Definition 4.14 (Zero Knowledge). A multi-folding scheme (G,K,P,V) for (R1,R2, compat, µ, ν) satis-
fies zero-knowledge if there exists a PPT simulator S such that for all PPT adversaries A and V∗, and
all randomness ρ

tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
((s1, s2), (u⃗1, w⃗1), (u⃗2, w⃗2))← A(pp),
compat(s1, s2) = 1,

(pp, s1, u⃗1, w⃗1) ∈ R(µ)
1 ,

(pp, s2, u⃗2, w⃗2) ∈ R(ν)
2 ,

(pk, vk)← K(pp, (s1, s2)),
tr← trace(⟨P,V∗(ρ)⟩, ((pk, vk), (u⃗1, u⃗2), (w⃗1, w⃗2)))

∼=

tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
(s, (u⃗1, w⃗1), (u⃗2, w⃗2))← A(pp),
compat(s1, s2) = 1,

(pp, s1, u⃗1, w⃗1) ∈ R(µ)
1 ,

(pp, s2, u⃗2, w⃗2) ∈ R(ν)
2 ,

(pk, vk)← K(pp, (s1, s2)),
tr← S((pk, vk), (u⃗1, u⃗2); ρ)

Definition 4.15 (Non-Interactive). A multi-folding scheme (G,K,P,V) is non-interactive if the interac-
tion between P and V consists of a single message from P to V. In this case, we update the function
signatures of P and V to include the message as an output of P and as an input to V, as follows:

24

• P(pk, (u⃗1, w⃗1), (u⃗2, w⃗2))→ (u,w, π) • V(vk, (u⃗1, u⃗2), π)→ u

Definition 4.16 (Public-coin). A multi-folding scheme (G,K,P,V) is called public-coin if all messages
sent from V to P are sampled from a uniform distribution.

4.8 Customizable Constraint Systems

4.8.1 The CCS Relation

Definition 4.17 (CCS [STW23a]). Let RCCS be the customizable constraint system relation (CCS),
defined as follows. An RCCS structure

sCCS = (m,n,N, ℓ, t, q, d, [Mi]
t
i=1, [Si]

q
i=1, [ci]

q
i=1])

consists of:

• Size bounds m,n,N, ℓ, t, q, d ∈ N, where n > ℓ.

• A sequence of t matrices [M1, . . . ,Mt] each in Fm×n, with at most N = Ω(max(m,n)) non-zero
entries.

• A sequence of q multisets [S1, . . . , Sq] each of cardinality at most d over the domain {1, . . . , t}.

• A sequence of q constants [c1, . . . , cq] each in F.

An RCCS instance x consists of public input x ∈ Fℓ. An RCCS witness consists of a vector w ∈ Fn−ℓ−1.
A CCS structure-instance tuple (s, x) is satisfied by a CCS witness w if

q∑
i=1

ci · ⃝j∈SiMj · z = 0

where z = (w, 1, x) ∈ Fn, Mj · z denotes matrix-vector multiplication, ⃝ denotes the Hadamard (entry-
wise) product, and 0 is the zero vector in Fm.

4.8.2 The Committed CCS Relation

Consider a CCS structure

sCCS = (m,n,N, ℓ, t, q, d, [Mi]
t
i=1, [Si]

q
i=1, [ci]

q
i=1])

Let s = ⌈logm⌉, s′ = ⌈log n⌉ and s′′ = ⌈log(n − ℓ − 1)⌉. By interpreting each Mi as functions of type

{0, 1}s × {0, 1}s′ → F, let M̃i denote the MLE of Mi. Similarly, for a purported witness w ∈ Fn−ℓ−1 let
w̃ denote the MLE of w viewed as a function of type {0, 1}s′′ → F.

Definition 4.18 (Committed CCS). Let RCCCS be the committed customizable constraint system
(CCCS) relation, defined as follows. Let PC be an additively-homomorphic polynomial commitment
scheme for multilinear polynomials over a finite field F.

An RCCCS structure

sCCCS = (m,n,N, ℓ, t, q, d, pp, [M̃i]
t
i=1, [Si]

q
i=1, [ci]

q
i=1)

consists of:

• Size bounds m,n,N, ℓ, t, q, d ∈ N and pp ← PC.Setup(1λ, s′′), where n > ℓ and let s = ⌈logm⌉,
s′ = ⌈log n⌉, s′′ = ⌈log(n− ℓ− 1)⌉.

25

• A sequence of t multilinear polynomials [M̃1, . . . , M̃t] each in F[X1, . . . , Xs+s′] over s+ s′ variables,
with at most N = Ω(m) locations over the Boolean hypercube {0, 1}s+s′ evaluating to a non-zero
value.

• A sequence of q multisets [S1, . . . , Sq] each of cardinality at most d over the domain {1, . . . , t}.

• A sequence of q constants [c1, . . . , cq] each in F.

An RCCCS instance (C, x) consists of a commitment C to an s′′-variate multilinear polynomial and public
input x ∈ Fℓ. An RCCCS witness is an s′′-variate multilinear polynomial w̃.

An RCCCS structure-instance tuple (s, (C, x)) is satisfied by an RCCCS witness w̃ if PC.Com(pp, w̃) = C
and for all x ∈ {0, 1}s,

q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃(y)

 = 0

where z̃ is the s′-variate MLE of z = (w, 1, x) viewed as a function of type {0, 1}s′ → F.

4.8.3 The Linearized Committed CCS Relation

Definition 4.19 (Linearized committed CCS). Let RLCCCS be the linearized committed customizable
constraint system (LCCCS) relation, defined as follows. Let PC be an additively-homomorphic polynomial
commitment scheme for multilinear polynomials over a finite field F.

An RLCCCS structure

sLCCCS = (m,n,N, ℓ, t, q, d, pp, [M̃i]
t
i=1, [Si]

q
i=1, [ci]

q
i=1)

consists of:

• Size bounds m,n,N, ℓ, t, q, d ∈ N and pp ← PC.Setup(1λ, s′′), where n > ℓ and let s = ⌈logm⌉,
s′ = ⌈log n⌉, s′′ = ⌈log(n− ℓ− 1)⌉.

• A sequence of t multilinear polynomials [M̃1, . . . , M̃t] each in F[X1, . . . , Xs+s′] over s+ s′ variables,
with at most N = Ω(m) locations over the Boolean hypercube {0, 1}s+s′ evaluating to a non-zero
value.

• A sequence of q multisets [S1, . . . , Sq] each of cardinality at most d over the domain {1, . . . , t}.

• A sequence of q constants [c1, . . . , cq] each in F.

An RLCCCS instance (C, u, x, r, [vi]
t
i=1]) consists of a commitment C to an s′′-variate multilinear poly-

nomial, public input x ∈ Fℓ, and u ∈ F, r ∈ Fs, v1, . . . , vt ∈ F. An RLCCCS witness is an s′′-variate
multilinear polynomial w̃.

AnRLCCCS structure-instance pair (s, (C, u, x, r, [vi]
t
i=1)) is satisfied by anRLCCCS witness w̃ if PC.Com(pp, w̃) =

C and ∀i ∈ [t]:

vi =
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y),

where z̃ is the s′-variate MLE of z = (w, u, x) viewed as a function of type {0, 1}s′ → F.

26

5 Components

5.1 A Multi-Folding Scheme for CCS

Construction 5.1 (A Multi-Folding scheme for CCS [KS23b]). Let PC be an additively-homomorphic
polynomial commitment scheme for multilinear polynomials over a finite field F. We construct a multi-
folding scheme for (RLCCCS,RCCCS, compat, µ = 1, ν = 1) as follows.

• compat(s1, s2)→ {0, 1}

– If s1 = s2 return 1, else return 0.

• G(1λ)→ pp:

1. Sample size bounds m,n,N, ℓ, t, q, d ∈ N with n > ℓ.

2. Let s = ⌈logm⌉, s′ = ⌈log n⌉, s′′ = ⌈log(n− ℓ− 1)⌉.
3. ppPC ← Setup(1λ, s′′)

4. Output pp← (m,n,N, ℓ, t, q, d, ppPC)

• K(pp, (s1, s2))→ (pk, vk):

1. Let pk← (pp, s1) and vk← pp

2. Output (pk, vk)

• ⟨P,V⟩((pk, vk), (u1, u2), (w1, w2))→ (u,w):

1. Parse u1 as an RLCCCS instance (C1, u, x1, rx, [vi]
t
i=1). Parse u2 as an RCCCS instance (C2, x2).

Parse w1 and w2 as multilinear polynomials w̃1 and w̃2. Let z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2).

2. V → P: Sample γ
R←− F, β R←− Fs, r′x

R←− Fs. Send (γ, β) to P.
3. V ↔ P: Run the sum-check protocol

c← ⟨P,V(r′x)⟩

g, s, d+ 1,
∑
j∈[t]

γj · vj

where:

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

Lj(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)

Q(x) := ẽq(β, x) ·

 q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)

4. P → V: Send [σi]

t
i=1 and [θi]

t
i=1 where for all i ∈ [t]:

σi :=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y)

θi :=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y)

27

5. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(β, r′x). Abort if:

c ̸=

∑
j∈[t]

γj · ei · σj

+

γt+1 · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj

6. V → P: Sample ρ

R←− F and send to P.
7. P,V: Output the folded RLCCCS instance u := (C ′, u′, x′, r′x, [v

′
i]
t
i=1) where ∀i ∈ [t]:

C ′ := C1 + ρ · C2,

u′ := u+ ρ · 1,
x′ := x1 + ρ · x2,
v′i := σi + ρ · θi.

8. P: Output the folded witness w := w̃′ where

w̃′ := w̃1 + ρ · w̃2.

Theorem 5.1 (A multi-folding scheme for CCS). Construction 5.1 is a public-coin multi-folding scheme
for (RLCCCS,RCCCS, compat, µ = 1, ν = 1) with perfect completeness and knowledge soundness.

5.2 A Generalized Multi-Folding Scheme for CCS

Construction 5.2 (A Generalized Multi-Folding Scheme for CCS [ZZD23]). Let PC be an additively-
homomorphic polynomial commitment scheme for multilinear polynomials over a finite field F. We
construct a multi-folding scheme for (RLCCCS,RCCCS, compat, µ, ν) as follows.

• compat(s1, s2)→ {0, 1}

– If s1 = s2 return 1, else return 0.

• G(1λ)→ pp:

1. Sample size bounds m,n,N, ℓ, t, q, d ∈ N with n > ℓ.

2. Sample size bounds µ, ν ∈ N.
3. Let s = ⌈logm⌉, s′ = ⌈log n⌉, s′′ = ⌈log(n− ℓ− 1)⌉.
4. ppPC ← Setup(1λ, s′′)

5. Output pp← (m,n,N, ℓ, t, q, d, µ, ν, ppPC)

• K(pp, (s1, s2))→ (pk, vk):

1. Let pk← (pp, s1) and vk← pp

2. Output (pk, vk)

• ⟨P,V⟩((pk, vk), (u⃗1, u⃗2), (w⃗1, w⃗2))→ (u,w):

1. Parse (u⃗1, w⃗1) as [ϕk]k∈[µ] and (u⃗2, w⃗2) as [ψk]k∈[ν].

2. V → P: Sample γ
R←− F, β R←− Fs, r′x

R←− Fs, and send (γ, β) to P.

28

3. V ↔ P: Run the sum-check protocol

c← ⟨P,V(r′x)⟩

(
g, s, d+ 1,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi

)
,

where

g(x) :=

µ∑
k=1

t∑
i=1

(
γ(k−1)t+i · Lk,i(x)

)
+

ν∑
k′=1

γµt+k′ ·Qk′(x)

Lk,i(x) := ẽq(ϕk.rx, x) ·

 ∑
y∈{0,1}s′

M̃i(x, y) · ϕk.z̃1(y)

Qk′(x) := ẽq(β, x) ·

 q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · ψk′ .z̃2(y)

4. P → V: Send [σk,i, θk′,i]k∈[µ],k′∈[ν],i∈[t] where for all i ∈ [t]:

σk,i :=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · ϕk.z̃1(y)

θk′,i :=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · ψk′ .z̃2(y)

5. V → P: Compute [ek,1 := ẽq(ϕk.rx, r
′
x)]k∈[µ], and e2 := ẽq(β, r′x), and abort if

c ̸=
µ∑

k=1

t∑
i=1

(
γ(k−1)t+i · ek,1 · σk,i

)
+

ν∑
k′=1

γµt+k′ · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θk′,j

6. V → P: Sample ρ

R←− F and send it to P.
7. P,V: Output the folded RLCCCS instance u := (C ′, u′, x′, r′x, [vi]

t
i=1]), where ∀i ∈ [t]:

C ′ :=

µ∑
k=1

ρk−1 · ϕk.C1 +
ν∑

k′=1

ρµ−1+k′ · ψk′ .C2,

u′ :=

µ∑
k=1

ρk−1 · ϕk.u+
ν∑

k′=1

ρµ−1+k′ · 1,

x′ :=

µ∑
k=1

ρk−1 · ϕk.x1 +
ν∑

k′=1

ρµ−1+k′ · ψk′ .x2,

v′i :=

µ∑
k=1

ρk−1 · σk,i +
ν∑

k′=1

ρµ−1+k′ · θk′,i.

8. P: Output the folded RLCCCS witness w := w̃′, where

w̃′ :=

µ∑
k=1

ρk−1 · ϕk.w̃1 +
ν∑

k′=1

ρµ−1+k′ · ψk′ .w̃2.

Theorem 5.2. Construction 5.2 is a public-coin multi-folding scheme for (RLCCCS,RCCCS, µ, ν) with
perfect completeness and knowledge soundness.

29

5.3 The Fiat-Shamir Transform For Multi-Folding Schemes

We construct a generic compiler FS that endows non-interactivity to multi-folding schemes via the Fiat-
Shamir transform. We adapt the system from [FS86; KST22; KS23b].

Construction 5.3 (Fiat-Shamir transform for multi-folding schemes). Let ΠMFS = (G,K,P,V) be a
public-coin multi-folding scheme for (R1,R2, compat, µ = 1, ν = 1) with ℓ rounds. Let ρ denote a random
oracle. We construct a compiler FS which transforms ΠMFS into a non-interactive multi-folding scheme
ΠNIMFS = (G′,K′,P ′,V ′) for (R1,R2, compat, µ = 1, ν = 1) in the random oracle model. We denote this
transformation as

ΠNIMFS = FS[ΠMFS]

The compiler operates as follows.

• G′(1λ)→ pp: Output pp← G(1λ).

• K′(pp, (s1, s2))→ (pk, vk):

– (pk, vk)← K(pp, (s1, s2)).
– r1 ← ρ(pp, (s1, s2)).

– Output (pk′, vk′)← ((pk, r1), (vk, r1)).

• P ′(pk′, (u1, w2), (u1, w2))→ (u,w, π):

– Parse pk′ as (pk, r1).

– Compute (u,w) ← P(pk, (u1, w1), (u2, w2)). On the ith message mi, respond with verifier
randomness ri+1 ← ρ(mi, ri) for i ∈ [ℓ]. Let π = (m1, . . . ,mℓ) be the messages sent by P.

– Output (u,w, π).

• V ′(vk′, (u1, u2), π)→ u:

– Parse vk′ as (vk, r1) and π as (m1, . . . ,mℓ).

– Compute u← V(vk, (u1, u2)) with randomness (r1, . . . , rℓ+1) computed as ri+1 ← ρ(mi, ri). In
round i, send the prover message mi.

– Output u.

Lemma 5.3 (Fiat-Shamir transform for multi-folding schemes). Construction 5.3 transforms a public-
coin multi-folding scheme ΠMFS for (R1,R2, compat, µ = 1, ν = 1) into a non-interactive multi-folding
scheme ΠNIMFS for (R1,R2, compat, µ = 1, ν = 1) in the random oracle model.

5.4 The CycleFold Compiler

Let (E1, E2) denote a 2-cycle of elliptic curves. Let F1 and F2 denote the scalar fields of E1 and E2,
respectively. Naturally, let F2 be the base field of E1 and F1 be the base field of E2. We adapt the system
from [KS23a].

Construction 5.4 (CycleFold Transform). Let Π
(E)
MFS = (G,K,P,V) be a multi-folding scheme for

(R1,R2, compat) defined over a single elliptic curve. We construct a compiler CF, invoked as

Π
(E1,E2)
MFS = CF[Π

(E)
MFS]

which transforms a multi-folding scheme Π
(E)
MFS described over a single curve into a multi-folding scheme

Π
(E1,E2)
MFS = (G′,K′,P ′,V ′) for (R1×RCRR1CS,R2, compat′) that uses a 2-cycle of curves to delegate foreign

arithmetic operations to a minimal F2-circuit. The compiler operates as follows.

First, we define a function FEC that performs elliptic curve arithmethic on F2, as follows.

30

• FEC(ρ, C1, C2, C
′):

– Check that C ′ = C1 + ρ · C2.

This function encodes a single scalar multiplication and addition over the curve E2, and is thus efficiently
representable as an R1CS circuit over F2.

• compat′(s1, s2)→ {0, 1}:

1. Parse s1 as (sR1 , sCRR1CS).

2. Parse s2 as sR2 .

3. Check that sCRR1CS = sEC.

4. Output compat(sR1 , sR2).

• G′(1λ)→ pp′:

– pp← G(1λ).

– Compute R1CS parameters for sEC:

∗ Compute size bounds m,n,N, ℓ ∈ N where n > ℓ

∗ ppE ← VC.Gen(1λ,m)

∗ ppW ← VC.Gen(1λ, n− ℓ− 1)

∗ Set ppEC ← (m,n,N, ℓ, ppE , ppW)

– Output pp′ ← (pp, ppEC)

• K′(pp′, (s1, s2))→ (pk′, vk′):

– Parse pp′ as (pp, ppEC).

– Parse s1 as (sR1 , sEC).

– Parse s2 as sR2 .

– (pk, vk)← K(pp, (sR1 , sR2))

– Set pk′ ← (pk, sEC), vk
′ ← vk.

– Output (pk, vk).

• ⟨P,V⟩′((pk′, vk′), (u′1, w′
1), (u

′
2, w

′
2))→ (u′, w′):

– Parse pk′ as (pk, sEC) and vk′ as vk.

– Parse u′1 as (u1, uEC,1) and u
′
2 as u2.

– Parse w′
1 as (w1, wEC,1) and w

′
2 as w2.

– Run (u,w)← ⟨P,V⟩((pk, vk), (u1, w1), (u2, w2)) except that:

∗ Parse uEC,1 as (E1, u1,W 1, x1).

∗ Initialize the folded CRR1CS instance u∗EC = (E
∗
, u∗,W

∗
, x∗) as E

∗ ← E1, u
∗ ← u1,

W
∗ ←W 1, x

∗ ← x1.

∗ For each i ∈ [k] of the k foreign-field computations that V performs over F2 of the form

C ′(i) ← C
(i)
1 + ρ · C(i)

2

do instead:

31

· P → V: Compute

(u
(i)
EC,2, w

(i)
EC,2)← trace(FEC, (ρ, C

(i)
1 , C

(i)
2 , C ′(i)))

where u
(i)
EC,2 = (E

(i)
2 , u

(i)
2 ,W

(i)
2 , x

(i)
2) and w

(i)
EC,2 = (E

(i)
2 ,W

(i)
2) are an instance-witness

tuple with structure sEC, such that u
(i)
2 = 1, E

(i)
2 = 0 and x

(i)
2 = (ρ, C

(i)
1 , C

(i)
2 , C ′(i)) for

some C ′(i) ∈ G2.

· V: Abort if u(i)2 ̸= 1 or E2 ̸= 0 or x
(i)
2 ̸= (ρ, C

(i)
1 , C

(i)
2 , C ′(i)) for some C ′(i) ∈ G2.

· P → V: Send T (i)
= VC.Com(ppE , T

(i)) where

T (i) = AZ1 ◦BZ2 +AZ2 ◦BZ1 − u∗ · CZ2 − u(i)2 · CZ1

where Z1 = (W ∗, x∗, u∗) and Z2 = (W
(i)
2 , x

(i)
2 , u

(i)
2).

· V → P: V samples ρ∗,(i)
R←− F1 and sends it to P.

· P,V: Update the CRR1CS instance u∗EC = (E
∗
, u∗,W

∗
, x∗):

E
∗ ← E1 + ρ∗,(i) · T (i)

u∗ ← u1 + ρ∗,(i) · 1

W
∗ ←W 1 + ρ∗,(i) ·W (i)

2

x∗ ← x1 + ρ∗,(i) · x(i)2

∗ Compute the folded R1 instance u via the [C
′(i)]ki=1 computed by P, and set the folded

CRR1CS uEC ← u∗EC.

∗ Output the folded final instance u′ ← (u, uEC).

– P: Invoke P to compute the folded witness w, and compute the folded CRR1CS witness
wEC ← (E∗,W ∗), where:

E∗ ← E1 + ρ∗,(i) · T (i)

W ∗ ←W1 + ρ∗,(i) ·W (i)
2

are computed for i ∈ [k].

– Output the folded witness w′ ← (w,wEC).

Theorem 5.4 (CycleFold transform for folding schemes). Construction 5.4 transforms a public-coin

multi-folding scheme Π
(E)
MFS for (R1,R2, compat, µ = 1, ν = 1) defined over a single elliptic curve into a

public-coin multi-folding scheme Π
(E1,E2)
MFS over (R1 ×RCRR1CS,R2, compat′, µ = 1, ν = 1) defined over a

2-cycle of elliptic curves.

5.5 HyperNova

Construction 5.5 (HyperNova [KS23b]). Let NIMFS = FS[ΠMFS] be the non-interactive multi-folding
scheme for (RLCCCS,RCCCS, compat, µ = 1, ν = 1) obtained from applying the Fiat-Shamir transform to
Construction 5.1. We construct an IVC scheme for CCCS as follows.

Let F be a polynomial-time function, and let hash be a cryptographic hash function. We define an
augmented function F ′ as follows, where all arguments are taken as non-deterministic advice.

• F ′(vk,Ui, ui, (i, z0, zi), ωi, π)→ x:

32

1. If i = 0, output hash(vk, 1, z0, F (z0, ω0), u⊥)

2. Else:

(a) Check ui.x = hash(vk, i, z0, zi,Ui)

(b) Fold Ui+1 ← NIFMS.V(vk,Ui, ui, π)

(c) Output hash(vk, i+ 1, z0, F (zi, ωi),Ui+1)

Because F ′ can be computed in polynomial time, it can be represented as an RCCCS structure sF ′ . Let

(ui+1,wi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, πi))

denote the satisfyingRCCCS instance-witness pair (ui+1,wi+1) for the execution of F ′ on non-deterministic
advice (vk,Ui, ui, (i, z0, zi), ωi, π).

We define the IVC scheme (G,K,P,V) as follows.

• G(1λ)→ pp: Output pp← NIMFS.G(1λ).

• K(pp, F)→ (pk, vk):

1. (pkfs, vkfs)← NIMFS.K(pp, (sF ′ , sF ′))

2. Output (pk, vk)← ((F, pkfs), (F, vkfs))

• P(pk, (i, z0, zi), ωi,Πi)→ Πi+1:

1. Parse Πi as ((Ui,Wi), (ui,wi))

2. Fold (Ui+1,Wi+1, π)← If i = 0 {(u⊥,w⊥,⊥} else {NIMFS.P(pk, (Ui,Wi), (ui,wi))}
3. Compute (ui+1,wi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, π))

4. Output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1))

• V(vk, (i, z0, zi),Πi)→ {0, 1}:

1. If i = 0, check zi = z0

2. Else:

(a) Parse Πi as ((Ui,Wi), (ui,wi))

(b) Check ui.x = hash(vk, i, z0, zi,Ui)

(c) Check that (Ui,Wi) and (ui,wi) are satisfying RLCCCS and RCCCS instance-witness pairs,
respectively.

Theorem 5.5 (HyperNova IVC). Construction 5.5 is an IVC scheme with perfect completeness, knowl-
edge soundness and succinctness.

5.6 Parallel Nova

We construct a parallel Nova scheme for binary-tree PCD transcripts, which we later combine with
[KS23a] two instantiate the scheme on a 2-cycle of elliptic curves, see Sec. 7.

Construction 5.6 (Parallel Nova). Let NIFS = (G,K,P,V) be the non-interactive folding scheme for
RCRR1CS. We construct a PCD scheme from Nova for binary-tree transcripts.

A message z is a tuple (n, zℓ, zr) attesting to F (n)(zℓ) = zr. We define the trivial message as ⊥=
(0, zℓ, zr) for any zℓ = zr. We define T to be a binary tree, where each node v = (n, zℓ, zr) ∈ V (T) is
labeled by its outgoing message, and for every pair of nodes (u, v), there exists an edge e = (u, v) ∈ E(T)

between them iff n(v) = 2n(u) + 1 and either z
(v)
ℓ = z

(u)
ℓ or z

(v)
r = z

(u)
r .

33

Figure 7: Post-order depth-first traversal of the binary-tree parallel Nova construction.

The nodes jointly compute F trough a post-order depth-first traversal of the tree, starting from the
left-most leaf, passing through the root, and ending at the right-most leaf. The root accumulates the
proofs of all its downstream descendants, therefore attesting to the whole computation.

Let F be a polynomial time function. First, we define a compliance predicate φ for F and an
augmented compliance predicate φ′ as follows:

• φ(z, ω, [zℓ, zr])→ {0, 1}:

1. Parse z as (n, zℓ, zr), zℓ as (nℓ, z
(ℓ)
ℓ , z

(ℓ)
r) and zr as (nr, z

(r)
ℓ , z

(r)
r)

2. If zℓ = zr =⊥, check z(ℓ)ℓ = z
(ℓ)
r and z

(r)
ℓ = z

(r)
r

3. Check z
(ℓ)
r = F (z

(r)
ℓ , ω)

4. Check n = nℓ + 1 + nr

5. Check zℓ = z
(ℓ)
ℓ and zr = z

(r)
r

• φ′(h, (z, ω, [(zℓ,Uℓ, uℓ, πℓ), (zr,Ur, ur, πr)], vk,U, π))→ {0, 1}:

1. Check φ(z, ω, [zℓ, zr]) = 1.

2. If zℓ = zr =⊥, then check h = hash(vk, z,⊥).
Else,

(a) Check uℓ.x = hash(vk, zℓ,Uℓ)

(b) Check ur.x = hash(vk, zr,Ur)

(c) Fold U′
ℓ ← NIFS.V(vk,Uℓ, uℓ, πℓ)

(d) Fold U′
r ← NIFS.V(vk,Ur, ur, πr)

(e) Fold U← NIFS.V(vk,U′
ℓ,U

′
r, π)

(f) Check h = hash(vk, z,U)

Since φ′ can be computed in polynomial time, it can be represented as an RCRR1CS structure. Let,

(u,w)← trace(Rφ, (h, (z, ω, [(zℓ,Uℓ, uℓ, πℓ), (zr,Ur, ur, πr)], vk,U, π))

denote the satisfying RCRR1CS instance-witness pair for the execution of Rφ on the above input.
We define the PCD scheme (G,K,P,V) as follows.

34

• G(1λ)→ pp: Output pp← NIFS.G(1λ).

• K(pp, φ)→ (pk, vk):

1. Compute (pkfs, vkfs)← NIFS.K(pp, φ′)

2. Output (pk, vk)← ((pkfs, vkfs), vkfs)

• P(pk, z, ω, [(zℓ,Πℓ), (zr,Πr)])→ Π:

1. Parse Πℓ as ((Uℓ,Wℓ), (uℓ,wℓ))

2. Parse Πr as ((Ur,Wr), (ur,wr))

3. If zℓ = zr =⊥, then set (U,W, π)← (u⊥,w⊥,⊥) and (πℓ, πr)← (⊥,⊥).
Else,

(a) Fold (U′
ℓ,W

′
ℓ, πℓ)← NIFS.P(pk, (Uℓ,Wℓ), (uℓ,wℓ))

(b) Fold (U′
r,W

′
r, πr)← NIFS.P(pk, (Ur,Wr), (ur,wr))

(c) Fold (U,W, π)← NIFS.P(pk, (U′
ℓ,W

′
ℓ), (U

′
r,W

′
r))

4. Compute h← hash(vk, z,U).

5. (u,w)← trace(φ′, (h, (z, ω, [(zℓ,Uℓ, uℓ, πℓ), (zr,Ur, ur, πr)], vk,U, π))

6. Output Π← ((U,w), (u,w))

• V(vk, z,Π)→ {0, 1}:

1. Parse Π as ((U,w), (u,w)).

2. Check that u.x = hash(vk, z,U).

3. Check that (U,W) and (u,w) are satisfying instance-witness pairs with respect to the structure
corresponding to φ′.

Theorem 5.6. Construction 5.6 is a PCD scheme with perfect completeness, knowledge soundness and
succinctness.

35

5.7 Parallel HyperNova

Construction 5.7 (Parallel HyperNova). Let NIMFS = (G,K,P,V) be the non-interactive multi-folding
scheme for (RLCCCS,RCCCS, compat, µ, ν) from [ZZD23]. We construct a PCD scheme from HyperNova
for r-ary tree transcripts.

A message z is a tuple (n, z(ℓ), z(r)) attesting to F (n)(z(ℓ)) = z(r). We define the trivial message as
⊥= (0,⊥,⊥). We define T to be an r-ary tree, where each node v = (n, z(ℓ), z(r)) ∈ V (T) is labeled by
its outgoing message.

Figure 8: An r-ary tree transcript of a PCD scheme for a parallel HyperNova construction.

Let F be a polynomial time function. First, we define a compliance predicate φ for F and an
augmented compliance predicate Rφ as follows:

• φ(z, [ωi]
r
i=1, [zi]

r
i=1)→ {0, 1}:

1. Parse z as (n, z(ℓ), z(r)).

2. For i ∈ [r], parse zi as (ni, z
(ℓ)
i , z

(r)
i).

3. For i ∈ {1, . . . , r − 1}, check z(ℓ)i+1 = F (z
(r)
i , ωi).

4. Check n = r − 1 +
∑

i∈[r] ni.

5. Check z(ℓ) = z
(ℓ)
1 and z(r) = z

(r)
r .

• Rφ(h, (z, [ωi]
r
i=1, [(zi,Ui, ui)]

r
i=1, vk,U, π))→ {0, 1}:

1. Check φ(z, [ωi]
r
i=1, [zi]

r
i=1) = 1.

2. If zi =⊥ for all i ∈ [r], then check h = hash(vk, z,⊥).
Else,

(a) For i ∈ [r], check ui.x = hash(vk, zi,Ui)

(b) Fold U← NIMFS.V(vk, [Ui]
r
i=1, [ui]

r
i=1, π)

(c) Check h = hash(vk, z,U)

Since Rφ can be computed in polynomial time, it can be represented as an RCCCS structure. Let,

(u,w)← trace(Rφ, (h, (z, [ωi]
r
i=1, [(zi,Ui, ui)]

r
i=1, vk,U, π))

denote the satisfying RCCCS instance-witness pair for the execution of Rφ on the above input.
We define the PCD scheme (G,K,P,V) as follows.

36

• G(1λ)→ pp: Output pp← NIMFS.G(1λ).

• K(pp, φ)→ (pk, vk):

1. Compute (pkfs, vkfs)← NIMFS.K(pp, Rφ)

2. Output (pk, vk)← ((pkfs, vkfs), vkfs)

• P(pk, z, [ωi]
r
i=1, [(zi,Πi)]

r
i=1)→ Π:

1. For i ∈ [r], parse Πi as ((Ui,Wi), (ui,wi))

2. If zi =⊥ for all i ∈ [r], then set (U,W, π)← (u⊥,w⊥,⊥).
Else, fold (U,W, π)← NIMFS.P(pk, [(Ui,Wi)]

r
i=1, [(ui,wi)]

r
i=1)

3. Compute h← hash(vk, z,U).

4. (u,w)← trace(Rφ, (h, (z, [ωi]
r
i=1, [(zi,Ui, ui)]

r
i=1, vk,U, π))

5. Output Π← ((U,w), (u,w))

• V(vk, z,Π)→ {0, 1}:

1. Parse Π as ((U,w), (u,w)).

2. Check that u.x = hash(vk, z,U).

3. Check that (U,W) and (u,w) are satisfying instance-witness pairs with respect to the structure
corresponding to Rφ.

Theorem 5.7. Construction 5.7 is a PCD scheme with perfect completeness, knowledge soundness and
succinctness.

37

6 Defining Zero-Knowledge Virtual Machines

Definition 6.1 (zkVM Scheme). Let VC be a binding vector commitment scheme with succinct commit-
ments. We define a zero-knowledge verifiable computing machine (zkVM) scheme as a four-tuple of PPT
algorithms (G,K,P,V), denoting the generator, encoder, prover and verifier, with the following interface.

• G(1λ)→ pp: Given a security parameter λ, samples public parameters pp.

• K(pp,Ξ) → (pk, vk): Given public parameters pp, and the encoding of a machine architecture
Ξ = (φ, (F1, . . . , Fℓ)), outputs a prover key pk and verifier key vk.

• P(pk, FΞ, x, ω) → (y, π): Given a prover key pk, a program FΞ encoded for Ξ, a public input x,
and a private input ω, outputs a claimed output y and a proof π, attesting to y = FΞ(x, ω).

• V(vk, FΞ, x, y, π)→ {0, 1}: Given a verifier key vk, a commitment to a program FΞ encoded for Ξ,
a public input x, a claimed output y and a proof π, outputs 1 (accept) or 0 (reject).

A zkVM scheme (G,K,P,V) must satisfy the following requirements. In what follows, we implicitly
consider FΞ to be computed via the commit operation of the vector commitment scheme on FΞ.

• Perfect Completeness. For all PPT adversaries A:

Pr

V(vk, FΞ, x, y, π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
(Ξ, FΞ, x, ω)← A(pp)
(pk, vk)← K(pp,Ξ)
(y, π)← P(pk, FΞ, x, ω)

 = 1

• Knowledge Soundness. For all PPT adversaries P∗, there exists a PPT extractor E such that
for all randomness ρ

Pr

 y′ ̸= y,

V(vk, FΞ, x, y, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)
(Ξ, FΞ, x, y, π)← A(pp; ρ)
(pk, vk)← K(pp,Ξ)
ω ← E(pp; ρ)
y′ ← FΞ(x, ω)

 ≤ negl(λ)

• Zero-Knowledge. For all PPT adversaries A there exists a PPT simulator S such that(pp, FΞ, x, y, π)

∣∣∣∣∣∣∣∣
pp← G(1λ)
(Ξ, FΞ, x, ω)← A(pp)
(pk, vk)← K(pp,Ξ)
(y, π)← P(pk, FΞ, x, ω)

 ∼=
(pp, FΞ, x, y, π)

∣∣∣∣∣∣∣∣
(pp, τ)← S(1λ)
(Ξ, FΞ, x, ω)← A(pp)
(pk, vk)← K(pp,Ξ)
(y, π)← S(pp, FΞ, x, τ)

• Succinctness. The proof size, and verifier time and space complexities are O(1).

Remark. Definition 6.1 is equivalent to a zk-SNARK for the language LΞ of computations encoded for
the machine architecture Ξ. Formally, we define the language LΞ as follows

LΞ =
{
((FΞ, x, y), ω) | FΞ(x, ω) = y

}
In particular, a zkVM scheme ΠzkVM for a machine architecture Ξ is equivalent to a zk-SNARK for the
language LΞ with O(1) proof size, and O(1) verifier space-time complexity.

38

7 The Nexus zkVM: A General-Purpose IVC Machine

Lastly, we construct the Nexus PCD prover as a series of compiler transformations, and then we use it
as a black-box for constructing the Nexus zkVM. This section is not totally formal, and it is intended to
provide a high-level overview of the construction. We refer the reader to the technical paper for a more
detailed treatment of the construction.

Construction 7.1 (The Nexus zkVM). The Nexus zkVM is a parallelized SuperNova-HyperNova-
CycleFold machine with succinct proof compression. That is, let RCCS ∈ NPC be the NP-complete CCS
language for arithmetic circuit satisfiability. Consider the protocol obtained by the following sequence of
transformations:

Π = PCD[NIVC[FS[CF[MFS[RCCS]]]]]

where

• MFS[RCCS]: denotes the multi-folding scheme for (RLCCCS,RCCCS, compat, µ, ν) from Construction
5.1.

• CF: denotes the CycleFold transformation from Construction 5.4.

• FS: denotes the Fiat-Shamir transformation for multi-folding schemes from Construction 5.3.

• NIVC: denotes the SuperNova non-uniform IVC transformation for non-interactive multi-folding
schemes.

• PCD: denotes the parallelization (proof-carrying-data) transformation for NIVC schemes.3

Further, let zkSNARK = (G,K,P,V) be a zk-SNARK for RCCS. Let init and end be functions that set the
initial state and extract the output of the machine, respectively. In particular, the init function initializes
two machine tapes: Tz the machine’s main memory tape, and Tω, a read-only private memory tape,
readable only through non-deterministic IVC advice.

Next, we define an augmented IVC verifier function V ′
IVC as follows, where all arguments are taken as

non-deterministic advice. This function is essentially comprises the Nexus zkVM “bootloading” process.

• V ′
IVC(vk, (F

Ξ, x, y), (FΞ, (n, z0, zn), ω, πIVC))→ x

1. Check VC.Open(vk, FΞ, FΞ) = 1

2. Check z0 = init(Ξ, (FΞ, x, ω))

3. Check Π.V(vk, (n, z0, zn), πIVC) = 1

4. Check y = end(Ξ, zn)

5. Output hash(vk, (FΞ, x, y))

Because V ′
IVC can be computed in polynomial time, it can be represented as an RCCS instance sV ′

IVC
. Let

(u,w)← trace(V ′
IVC, input)

denote the satisfying RCCS instance-witness pair (u,w) for the execution of V ′
IVC on non-deterministic

advice input.
Finally, we construct a parallelized zkVM scheme

ΠzkVM = (G,K,P,V)

as follows.
3The problem of endowing PCD with SuperNova-like non-uniformity will be described in later work.

39

• G(1λ)→ pp: Output Π.G(1λ).

• K(pp,Ξ)→ (pk, vk): Output Π.K(pp,Ξ).

• P(pk, FΞ, x, ω)→ (y, π):

1. Generate the IVC proof :

(a) Initialize the state of the machine:

– z0 ← init(Ξ, (FΞ, x, ω))

(b) Generate the execution trace:

– (z⃗, w⃗)← trace(Ξ, z0)

(c) Compute the IVC proof through the r-ary PCD parallelization tree:

– πIVC ← Π.P(pk, (z⃗, w⃗))

2. Compress:

(a) Extract the output of the machine:

– y ← end(Ξ, zn)

(b) Compute the instance-witness pair for the execution of the augmented IVC verifier:

– (u,w)← trace(V ′
IVC, ((F

Ξ, x, y), (FΞ, (n, z0, zn), ω, πIVC)))

(c) Generate the compressed zk-SNARK proof:

– πzkSNARK ← zkSNARK(pk, u,w)

3. Output:

(a) Set the final proof:

– π ← (u, πzkSNARK)

(b) Output (y, π)

• V(vk, FΞ, x, y, π)→ {0, 1}:

1. Parse π as (u, πzkSNARK)

2. Check u.x = hash(vk, (FΞ, x, y))

3. Check zkSNARK.V(vk, u, πzkSNARK) = 1

40

8 The Nexus Network: A Verifiable Supercomputer

The Nexus Network is a physical instantiation of the IVC / PCD prover of the Nexus zkVM (Fig. 2).
It is combined with a variety of algorithms that reduce communication overhead and allocate chunks of
computation in a massively-parallelized work-stealing fashion (like worker threads in a gigantic CPU).
Due to length (and time) constraints, the details will be released in a separate document.

41

References

[Tur+36] Alan Mathison Turing et al. “On computable numbers, with an application to the Entschei-
dungsproblem”. In: J. of Math 58.345-363 (1936), p. 5 (cit. on p. 12).

[Göd56] Kurt Gödel. Mar. 1956. url: https://www.anilada.com/notes/godel-letter.pdf
(cit. on p. 12).

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the seventeenth
annual ACM symposium on Theory of computing. 1985, pp. 421–429 (cit. on pp. 12, 15).

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identification
and signature problems”. In: Conference on the theory and application of cryptographic
techniques. Springer. 1986, pp. 186–194 (cit. on pp. 15, 16, 30).

[GS86] Shafi Goldwasser and Michael Sipser. “Private coins versus public coins in interactive proof
systems”. In: Proceedings of the eighteenth annual ACM symposium on Theory of computing.
1986, pp. 59–68 (cit. on p. 15).

[BHZ87] Ravi B Boppana, Johan Hastad, and Stathis Zachos. “Does co-NP have short interactive
proofs?” In: Information Processing Letters 25.2 (1987), pp. 127–132 (cit. on p. 15).

[Mer87] Ralph C Merkle. “A digital signature based on a conventional encryption function”. In: Con-
ference on the theory and application of cryptographic techniques. Springer. 1987, pp. 369–
378 (cit. on pp. 5, 15).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-Knowledge and Its
Applications (Extended Abstract)”. In: STOC. 1988 (cit. on p. 12).

[FRS88] L Fortnow, J Rompel, and M Sipser. “On the power of multi-power interactive protocols”.
In: 1988 Structure in Complexity Theory Third Annual Conference. IEEE Computer Soci-
ety. 1988, pp. 156–157 (cit. on pp. 12, 15).

[BFLS91] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. “Checking computations
in polylogarithmic time”. In: Proceedings of the twenty-third annual ACM symposium on
Theory of computing. 1991, pp. 21–32 (cit. on pp. 12, 15).

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. “Non-deterministic exponential time has
two-prover interactive protocols”. In: Computational complexity 1 (1991), pp. 3–40 (cit. on
pp. 12, 15).

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Noninteractive
Zero-Knowledge”. In: SIAM J. Comput. 20.6 (1991), pp. 1084–1118. doi: 10.1137/0220068.
url: https://doi.org/10.1137/0220068 (cit. on p. 12).

[Ped91] Torben Pryds Pedersen. “Non-interactive and information-theoretic secure verifiable secret
sharing”. In: Annual international cryptology conference. Springer. 1991, pp. 129–140 (cit.
on pp. 16, 17).

[AS92] S Arora and S Safra. “Probabilistic checking of proofs; a new characterization of NP”. In:
Proceedings., 33rd Annual Symposium on Foundations of Computer Science. IEEE. 1992,
pp. 2–13 (cit. on pp. 12, 15).

[Aro+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and hardness of approximation problems”. In: 33rd Annual Symposium on Foun-
dations of Computer Science, FOCS 1992. IEEE Computer Society. 1992, pp. 14–23 (cit. on
pp. 12, 15).

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of
the twenty-fourth annual ACM symposium on Theory of computing. 1992, pp. 723–732 (cit.
on pp. 12, 15, 16).

42

https://www.anilada.com/notes/godel-letter.pdf
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic methods for
interactive proof systems”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 859–868 (cit.
on pp. 15, 18).

[SP92] Alfredo De Santis and Giuseppe Persiano. “Zero-Knowledge Proofs of Knowledge Without
Interaction (Extended Abstract)”. In: 33rd Annual Symposium on Foundations of Computer
Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992. IEEE Computer Society,
1992, pp. 427–436. doi: 10.1109/SFCS.1992.267809. url: https://doi.org/10.
1109/SFCS.1992.267809 (cit. on p. 12).

[Sha92] Adi Shamir. “Ip= pspace”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 869–877 (cit.
on p. 15).

[Sip92] Michael Sipser. “The history and status of the P versus NP question”. In: Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing. 1992, pp. 603–618 (cit. on
p. 12).

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: A paradigm for de-
signing efficient protocols”. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. 1993, pp. 62–73 (cit. on p. 15).

[Gol93] Oded Goldreich. “A taxonomy of proof systems (part 1)”. In: ACM SIGACT News 24.4
(1993), pp. 2–13 (cit. on p. 15).

[Von93] John Von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE Annals of the
History of Computing 15.4 (1993), pp. 27–75 (cit. on p. 12).

[Mic94] Silvio Micali. “CS proofs”. In: Proceedings 35th Annual Symposium on Foundations of Com-
puter Science. IEEE. 1994, pp. 436–453 (cit. on pp. 12, 15, 16).

[96] 1996. url: https://www.mersenne.org/ (cit. on p. 8).

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short signatures from the Weil pairing”.
In: International conference on the theory and application of cryptology and information
security. Springer. 2001, pp. 514–532 (cit. on p. 4).

[And+02] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. “SETI@
home: an experiment in public-resource computing”. In: Communications of the ACM 45.11
(2002), pp. 56–61 (cit. on p. 8).

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology, revis-
ited”. In: Journal of the ACM (JACM) 51.4 (2004), pp. 557–594 (cit. on p. 15).

[PS05] Rafael Pass and Abhi Shelat. “Unconditional characterizations of non-interactive zero-
knowledge”. In: Advances in Cryptology–CRYPTO 2005: 25th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 14-18, 2005. Proceedings 25.
Springer. 2005, pp. 118–134 (cit. on p. 15).

[DL08] Giovanni Di Crescenzo and Helger Lipmaa. “Succinct NP proofs from an extractability
assumption”. In: Logic and Theory of Algorithms: 4th Conference on Computability in Eu-
rope, CiE 2008, Athens, Greece, June 15-20, 2008 Proceedings 4. Springer. 2008, pp. 175–
185 (cit. on p. 16).

[Val08] Paul Valiant. “Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency”. In: Theory of Cryptography: Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, 2008. Proceedings 5. Springer. 2008, pp. 1–18 (cit. on
pp. 3, 16).

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009 (cit. on p. 12).

43

https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1109/SFCS.1992.267809
https://www.mersenne.org/

[Beb+09] Adam L Beberg, Daniel L Ensign, Guha Jayachandran, Siraj Khaliq, and Vijay S Pande.
“Folding@ home: Lessons from eight years of volunteer distributed computing”. In: 2009
IEEE International Symposium on Parallel & Distributed Processing. IEEE. 2009, pp. 1–8
(cit. on p. 8).

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Arguments from
Signature Cards.” In: ICS. Vol. 10. 2010, pp. 310–331 (cit. on pp. 3, 16).

[Gro10] Jens Groth. “Short pairing-based non-interactive zero-knowledge arguments”. In: Advances
in Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings
16. Springer. 2010, pp. 321–340 (cit. on pp. 12, 16).

[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. “Constant-size commitments to
polynomials and their applications”. In: Advances in Cryptology-ASIACRYPT 2010: 16th
International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings 16. Springer. 2010, pp. 177–194 (cit.
on p. 16).

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “From extractable colli-
sion resistance to succinct non-interactive arguments of knowledge, and back again”. In: Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference. 2012, pp. 326–
349 (cit. on pp. 12, 16).

[Ben+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. “SNARKs
for C: Verifying program executions succinctly and in zero knowledge”. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II. Springer. 2013, pp. 90–108 (cit. on pp. 13, 17).

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive composition
and bootstrapping for SNARKs and proof-carrying data”. In: Proceedings of the forty-fifth
annual ACM symposium on Theory of computing. 2013, pp. 111–120 (cit. on p. 16).

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic span
programs and succinct NIZKs without PCPs”. In: Advances in Cryptology–EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings 32. Springer. 2013,
pp. 626–645 (cit. on pp. 5, 12).

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Succinct {Non-
Interactive} zero knowledge for a von neumann architecture”. In: 23rd USENIX Security
Symposium (USENIX Security 14). 2014, pp. 781–796 (cit. on pp. 13, 17).

[TG14] Ben-Sasson E Chiesa A Tromer and E Virza M Garay JA Gennaro. “R Scalable zero
knowledge via cycles of elliptic curves”. In: Advances in Cryptology–CRYPTO. Vol. 2014.
2014 (cit. on p. 5).

[WLPA14] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. “The RISC-
V instruction set manual, volume I: User-level ISA, version 2.0”. In: EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-54 (2014) (cit. on p. 4).

[Woo+14] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32 (cit. on pp. 4, 5).

[KM15] Neal Koblitz and Alfred J Menezes. “The random oracle model: a twenty-year retrospec-
tive”. In: Designs, Codes and Cryptography 77 (2015), pp. 587–610 (cit. on p. 15).

[Zkc15] Zkcrypto. Zkcrypto/bellman: ZK-snark library. 2015. url: https://github.com/zkcrypto/
bellman (cit. on p. 12).

44

https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive oracle proofs”. In:
Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, Oc-
tober 31-November 3, 2016, Proceedings, Part II 14. Springer. 2016, pp. 31–60 (cit. on
pp. 12, 15, 16).

[Gro16] Jens Groth. “On the size of pairing-based non-interactive arguments”. In: Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II 35. Springer. 2016, pp. 305–326 (cit. on pp. 10, 12, 16).

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
“Ligero: Lightweight sublinear arguments without a trusted setup”. In: Proceedings of the
2017 acm sigsac conference on computer and communications security. 2017, pp. 2087–2104
(cit. on p. 16).

[BCTV17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable zero knowl-
edge via cycles of elliptic curves”. In: Algorithmica 79 (2017), pp. 1102–1160 (cit. on pp. 13,
16).

[Haa+17] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. “Bringing the web up to speed with
WebAssembly”. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2017, pp. 185–200 (cit. on p. 4).

[Zok17] Zokrates. Zokrates/Zokrates: A toolbox for zkSNARKs on ethereum. 2017. url: https:
//github.com/Zokrates/ZoKrates (cit. on p. 12).

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast reed-solomon
interactive oracle proofs of proximity”. In: 45th international colloquium on automata, lan-
guages, and programming (icalp 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2018 (cit. on p. 16).

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable, transparent,
and post-quantum secure computational integrity”. In: Cryptology ePrint Archive (2018)
(cit. on p. 16).

[Bün+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. “Bulletproofs: Short proofs for confidential transactions and more”. In: 2018 IEEE
symposium on security and privacy (SP). IEEE. 2018, pp. 315–334 (cit. on p. 16).

[Wah+18] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. “Doubly-
efficient zkSNARKs without trusted setup”. In: 2018 IEEE Symposium on Security and
Privacy (SP). IEEE. 2018, pp. 926–943 (cit. on p. 16).

[BGKW19] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. “Multi-prover interac-
tive proofs: How to remove intractability assumptions”. In: Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali. 2019, pp. 373–410
(cit. on pp. 12, 15).

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable zero knowledge
with no trusted setup”. In: Advances in Cryptology–CRYPTO 2019: 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part III 39. Springer. 2019, pp. 701–732 (cit. on p. 5).

[Ben+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P Ward. “Aurora: Transparent succinct arguments for R1CS”. In: Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Pro-
ceedings, Part I 38. Springer. 2019, pp. 103–128 (cit. on p. 16).

45

https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. “Recursive proof composition without a
trusted setup”. In: Cryptology ePrint Archive (2019) (cit. on pp. 10, 17).

[GWC19] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. “Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge”. In: Cryptology
ePrint Archive (2019) (cit. on pp. 5, 16).

[GMR19] Shafi Goldwasser, Silvio Micali, and Chales Rackoff. “The knowledge complexity of inter-
active proof-systems”. In: Providing sound foundations for cryptography: On the work of
shafi goldwasser and silvio micali. 2019, pp. 203–225 (cit. on pp. 12, 15).

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. “Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings”. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
2019, pp. 2111–2128 (cit. on p. 16).

[Wig19] Avi Wigderson. Mathematics and computation: A theory revolutionizing technology and
science. Princeton University Press, 2019 (cit. on p. 12).

[Xie+19] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
“Libra: Succinct zero-knowledge proofs with optimal prover computation”. In: Advances
in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III 39. Springer. 2019, pp. 733–
764 (cit. on p. 16).

[BGH20] Sean Bowe, Jack Grigg, and Daira Hopwood. Zcash/Halo2: The halo2 zero-knowledge prov-
ing system. 2020. url: https://github.com/zcash/halo2 (cit. on pp. 10, 12, 13, 16).

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. “Proof-carrying
data from accumulation schemes”. In: Cryptology ePrint Archive (2020) (cit. on pp. 13, 17,
18).

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas P Ward. “Reducing
participation costs via incremental verification for ledger systems”. In: Cryptology ePrint
Archive (2020) (cit. on pp. 13, 16).

[Chi+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. “Marlin: Preprocessing zkSNARKs with universal and updatable SRS”. In: Advances
in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceed-
ings, Part I 39. Springer. 2020, pp. 738–768 (cit. on p. 16).

[CGTV20] Eli Ben-Sasson Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. “TinyRAM
Architecture Specification v2. 000”. In: (2020) (cit. on pp. 4, 6, 13).

[LNS20] Jonathan Lee, Kirill Nikitin, and Srinath Setty. “Replicated state machines without repli-
cated execution”. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020,
pp. 119–134 (cit. on p. 17).

[Noi20] Noir-Lang. Noir-lang/noir: Noir is a domain specific language for zero knowledge proofs.
2020. url: https://github.com/noir-lang/noir (cit. on p. 12).

[Set20] Srinath Setty. “Spartan: Efficient and general-purpose zkSNARKs without trusted setup”.
In: Annual International Cryptology Conference. Springer. 2020, pp. 704–737 (cit. on pp. 10,
15, 16, 18).

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent polynomial
delegation and its applications to zero knowledge proof”. In: 2020 IEEE Symposium on
Security and Privacy (SP). IEEE. 2020, pp. 859–876 (cit. on p. 16).

46

https://github.com/zcash/halo2
https://github.com/noir-lang/noir

[Bün+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner.
“Proof-carrying data without succinct arguments”. In: Advances in Cryptology–CRYPTO
2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16–20, 2021, Proceedings, Part I 41. Springer. 2021, pp. 681–710 (cit. on pp. 13, 17,
18, 21).

[Chi+21] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric McCarthy, and Eric
Smith. “Leo: A programming language for formally verified, zero-knowledge applications”.
In: Cryptology ePrint Archive (2021) (cit. on pp. 12, 13).

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. “Cairo–a Turing-complete STARK-
friendly CPU architecture”. In: Cryptology ePrint Archive (2021) (cit. on pp. 13, 17).

[Gol+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S Wahby.
“Brakedown: Linear-time and post-quantum SNARKs for R1CS”. In: Cryptology ePrint
Archive (2021) (cit. on p. 16).

[Gra+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus
Schofnegger. “Poseidon: A new hash function for {Zero-Knowledge} proof systems”. In:
30th USENIX Security Symposium (USENIX Security 21). 2021, pp. 519–535 (cit. on p. 5).

[ide21] iden3. Iden3/Circom: Zksnark Circuit compiler. 2021. url: https://github.com/iden3/
circom (cit. on p. 12).

[Sta21] StarkWare. ethSTARK Documentation. Cryptology ePrint Archive, Paper 2021/582. https:
//eprint.iacr.org/2021/582. 2021. url: https://eprint.iacr.org/2021/582 (cit. on
p. 5).

[Aas+22] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas Stalder, and Javier
Varela. “Fpga acceleration of multi-scalar multiplication: Cyclonemsm”. In: Cryptology
ePrint Archive (2022) (cit. on p. 4).

[ark22] arkworks. arkworks zkSNARK ecosystem. 2022. url: https://arkworks.rs (cit. on pp. 9,
10, 12).

[BCKL22] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. “Scalable and transpar-
ent proofs over all large fields, via elliptic curves”. In: Electronic Colloquium on Computa-
tional Complexity, Report. Vol. 110. 2022, p. 2022 (cit. on p. 5).

[KS22] Abhiram Kothapalli and Srinath Setty. “SuperNova: Proving universal machine executions
without universal circuits”. In: Cryptology ePrint Archive (2022) (cit. on pp. 3, 6, 10, 17,
18).

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive zero-knowledge
arguments from folding schemes”. In:Annual International Cryptology Conference. Springer.
2022, pp. 359–388 (cit. on pp. 3, 9, 10, 13, 16–18, 22, 30).

[Sta22] StarkWare. Recursive Starks. Aug. 2022. url: https://medium.com/starkware/recursive-
starks-78f8dd401025 (cit. on p. 17).

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Orion: Zero knowledge proof with linear
prover time”. In: Annual International Cryptology Conference. Springer. 2022, pp. 299–328
(cit. on p. 16).

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. “Jolt: Snarks for virtual machines via
lookups”. In: Cryptology ePrint Archive (2023) (cit. on pp. 6, 10, 18).

[BC23] Benedikt Bünz and Binyi Chen. “Protostar: Generic efficient accumulation/folding for spe-
cial sound protocols”. In: Cryptology ePrint Archive (2023) (cit. on pp. 3, 6, 9, 17, 18).

47

https://github.com/iden3/circom
https://github.com/iden3/circom
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://arkworks.rs
https://medium.com/starkware/recursive-starks-78f8dd401025
https://medium.com/starkware/recursive-starks-78f8dd401025

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “Hyperplonk: Plonk with
linear-time prover and high-degree custom gates”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2023, pp. 499–530 (cit.
on pp. 5, 16).

[CGSY23] Alessandro Chiesa, Ziyi Guan, Shahar Samocha, and Eylon Yogev. “Security Bounds for
Proof-Carrying Data from Straightline Extractors”. In: Cryptology ePrint Archive (2023)
(cit. on p. 13).

[Cog+23] Alessandro Coglio, Eric McCarthy, Eric Smith, Collin Chin, Pranav Gaddamadugu, and
Michel Dellepere. “Compositional Formal Verification of Zero-Knowledge Circuits”. In:
Cryptology ePrint Archive (2023) (cit. on p. 14).

[CMS23] Alessandro Coglio, Eric McCarthy, and Eric W Smith. “Formal Verification of Zero-Knowledge
Circuits”. In: arXiv preprint arXiv:2311.08858 (2023) (cit. on p. 14).

[EG23] Liam Eagen and Ariel Gabizon. “ProtoGalaxy: Efficient ProtoStar-style folding of multiple
instances”. In: Cryptology ePrint Archive (2023) (cit. on p. 17).

[GHK23] Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. “Dora: Processor Expres-
siveness is (Nearly) Free in Zero-Knowledge for RAM Programs”. In: Cryptology ePrint
Archive (2023) (cit. on pp. 6, 10).

[KT23] Tohru Kohrita and Patrick Towa. “Zeromorph: Zero-Knowledge Multilinear-Evaluation
Proofs from Homomorphic Univariate Commitments”. In: Cryptology ePrint Archive (2023)
(cit. on p. 10).

[KS23a] Abhiram Kothapalli and Srinath Setty. “CycleFold: Folding-scheme-based recursive argu-
ments over a cycle of elliptic curves”. In: Cryptology ePrint Archive (2023) (cit. on pp. 3,
5, 9, 16–18, 30, 33).

[KS23b] Abhiram Kothapalli and Srinath Setty. “HyperNova: Recursive arguments for customizable
constraint systems”. In: Cryptology ePrint Archive (2023) (cit. on pp. 3, 4, 9, 15, 17, 18,
23, 27, 30, 32).

[NBS23] Wilson Nguyen, Dan Boneh, and Srinath Setty. “Revisiting the Nova Proof System on a
Cycle of Curves”. In: Cryptology ePrint Archive (2023) (cit. on pp. 5, 14, 16).

[OWBB23] Alex Ozdemir, Riad S Wahby, Fraser Brown, and Clark Barrett. “Bounded Verification for
Finite-Field-Blasting (In a Compiler for Zero Knowledge Proofs)”. In: Cryptology ePrint
Archive (2023) (cit. on p. 14).

[STW23a] Srinath Setty, Justin Thaler, and Riad Wahby. “Customizable constraint systems for suc-
cinct arguments”. In: Cryptology ePrint Archive (2023) (cit. on pp. 5, 9, 15, 18, 25).

[STW23b] Srinath Setty, Justin Thaler, and Riad Wahby. “Unlocking the lookup singularity with
Lasso”. In: Cryptology ePrint Archive (2023) (cit. on p. 10).

[ZGGX23] Tianyu Zheng, Shang Gao, Yu Guo, and Bin Xiao. “KiloNova: Non-Uniform PCD with
Zero-Knowledge Property from Generic Folding Schemes”. In: Cryptology ePrint Archive
(2023) (cit. on pp. 6, 9, 10, 17).

[ZZD23] Zibo Zhou, Zongyang Zhang, and Jin Dong. “Proof-Carrying Data from Multi-folding
Schemes”. In: Cryptology ePrint Archive (2023) (cit. on pp. 9, 17, 18, 28, 36).

48

	Summary
	The Nexus zkVM
	The Nexus Virtual Machine
	The Nexus zkVM co-processors.
	The Nexus Network
	Open-Source Implementation
	Example

	Introduction
	Why are zero-knowledge proofs still not practical?
	The Nexus System

	Background
	Preliminaries
	The Sum-Check Protocol
	Non-Interactive Arguments of Knowledge (NARKs)
	Incrementally Verifiable Computation (IVC)
	Non-uniform Incrementally Verifiable Computation (NIVC)
	Proof-Carrying Data
	Folding Schemes
	Multi-Folding Schemes
	Customizable Constraint Systems
	The CCS Relation
	The Committed CCS Relation
	The Linearized Committed CCS Relation

	Components
	A Multi-Folding Scheme for CCS
	A Generalized Multi-Folding Scheme for CCS
	The Fiat-Shamir Transform For Multi-Folding Schemes
	The CycleFold Compiler
	HyperNova
	Parallel Nova
	Parallel HyperNova

	Defining Zero-Knowledge Virtual Machines
	The Nexus zkVM: A General-Purpose IVC Machine
	The Nexus Network: A Verifiable Supercomputer

